Suppr超能文献

一种新型 TGF-β 相关标志物用于预测结直肠癌的预后、肿瘤微环境和治疗反应。

A Novel TGF-β-Related Signature for Predicting Prognosis, Tumor Microenvironment, and Therapeutic Response in Colorectal Cancer.

机构信息

Department of General Surgery, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai, 200040, People's Republic of China.

Cancer Metastasis Institute, Fudan University, Shanghai, People's Republic of China.

出版信息

Biochem Genet. 2024 Aug;62(4):2999-3029. doi: 10.1007/s10528-023-10591-7. Epub 2023 Dec 7.

Abstract

The transforming growth factor beta (TGF-β) signaling plays a critical role in immune evasion and tumor progression. However, its modulatory influences on prognosis, tumor microenvironment (TME), and therapeutic efficacy remain unknown in colorectal cancer (CRC). We summarized TGF-β-related genes and comprehensively estimated their expression pattern in 2142 CRC samples from 9 datasets. Two distinct cluster patterns were divided and biological characteristics of each pattern were further analyzed. Then, to quantify the TGF-β cluster pattern of individual CRC patient, we generated the TGF-β score (TGFBscore) model based on TGF-β cluster pattern-relevant differentially expressed genes (DEGs). Subsequently, we conducted correlation analysis for TGFBscore and clinical prognosis, consensus molecular subtypes (CMSs), TME characteristics, liver metastasis, drug response, and immunotherapeutic efficacy in CRC. We illustrated transcriptional and genetic alterations of TGF-β-relevant genes, which were closely linked with carcinogenic pathways. We identified two different TGF-β cluster patterns, characterized by a high and a low TGFBscore. The TGFBscore-high group was significantly linked with worse patient survival, epithelial-mesenchymal transition (EMT) activation, liver metastasis tendency, and the infiltration of immunosuppressive cells (regulatory T cells [Tregs], M2 macrophages, cancer-associated fibroblasts [CAFs], and myeloid-derived suppressor cells [MDSCs]), while the TGFBscore-low group was linked with a survival advantage, epithelial phenotype, early CRC staging, and the infiltration of immune-activated cells (B cell, CD4 T cell, natural killer T [NKT] cell, and T helper 1 [Th1] cell). In terms of predicting drug response, TGFBscore negatively correlated (sensitive to TGFBscore-high group) with drugs targeting PI3K/mTOR, JNK and p38, RTK signaling pathways, and positively correlated (sensitive to TGFBscore-low group) with drugs targeting EGFR signaling pathway. Also, TGFBscore could predict the efficacy of different anti-tumor therapies. TGFBscore-low patients might benefit more from anti-PDL1 immunotherapy, adjuvant chemotherapy (ACT), and ERBB targeted therapy, whereas TGFBscore-high patients might benefit more from antiangiogenic targeted therapy. Our study constructed a novel TGF-β scoring model that could predict prognosis, liver metastasis tendency, and TME characteristics for CRC patients. More importantly, this work emphasizes the potential clinical utility of TGFBscore in evaluating the efficacy of chemotherapy, targeted therapy, and immunotherapy, guiding individualized precision treatment in CRC.

摘要

转化生长因子-β(TGF-β)信号通路在免疫逃逸和肿瘤进展中发挥着关键作用。然而,其对结直肠癌(CRC)预后、肿瘤微环境(TME)和治疗效果的调节影响尚不清楚。我们总结了 TGF-β相关基因,并综合评估了来自 9 个数据集的 2142 例 CRC 样本中的表达模式。我们将其分为两个不同的聚类模式,并进一步分析了每个模式的生物学特征。然后,为了量化个体 CRC 患者的 TGF-β聚类模式,我们基于与 TGF-β聚类模式相关的差异表达基因(DEGs)生成了 TGF-β评分(TGFBscore)模型。接下来,我们对 TGFBscore 与 CRC 患者的临床预后、共识分子亚型(CMSs)、TME 特征、肝转移、药物反应和免疫治疗效果进行了相关性分析。我们阐明了与致癌途径密切相关的 TGF-β相关基因的转录和遗传改变。我们确定了两种不同的 TGF-β聚类模式,其特征是 TGFBscore 高和低。TGFBscore-高组与患者生存较差、上皮-间充质转化(EMT)激活、肝转移倾向以及免疫抑制细胞(调节性 T 细胞[Tregs]、M2 巨噬细胞、癌相关成纤维细胞[CAFs]和髓源性抑制细胞[MDSCs])浸润显著相关,而 TGFBscore-低组与生存优势、上皮表型、早期 CRC 分期以及免疫激活细胞(B 细胞、CD4 T 细胞、自然杀伤 T [NKT]细胞和辅助性 T 细胞 1 [Th1]细胞)浸润显著相关。在预测药物反应方面,TGFBscore 与靶向 PI3K/mTOR、JNK 和 p38、RTK 信号通路的药物呈负相关(对 TGFBscore-高组敏感),与靶向 EGFR 信号通路的药物呈正相关(对 TGFBscore-低组敏感)。此外,TGFBscore 还可以预测不同抗肿瘤治疗的疗效。TGFBscore-低患者可能从抗 PD-L1 免疫治疗、辅助化疗(ACT)和 ERBB 靶向治疗中获益更多,而 TGFBscore-高患者可能从抗血管生成靶向治疗中获益更多。我们构建了一个新的 TGF-β评分模型,可预测 CRC 患者的预后、肝转移倾向和 TME 特征。更重要的是,这项工作强调了 TGFBscore 在评估化疗、靶向治疗和免疫治疗疗效方面的潜在临床应用价值,为 CRC 的个体化精准治疗提供了指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验