Department of Biomedical Engineering, Isfahan University of Medical Sciences, Isfahan, Iran.
Medical Image and Signal Processing Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
Int J Neural Syst. 2024 Jan;34(1):2450006. doi: 10.1142/S0129065724500060. Epub 2023 Dec 6.
The stable decoding of movement parameters using neural activity is crucial for the success of brain-machine interfaces (BMIs). However, neural activity can be unstable over time, leading to changes in the parameters used for decoding movement, which can hinder accurate movement decoding. To tackle this issue, one approach is to transfer neural activity to a stable, low-dimensional manifold using dimensionality reduction techniques and align manifolds across sessions by maximizing correlations of the manifolds. However, the practical use of manifold stabilization techniques requires knowledge of the true subject intentions such as target direction or behavioral state. To overcome this limitation, an automatic unsupervised algorithm is proposed that determines movement target intention before manifold alignment in the presence of manifold rotation and scaling across sessions. This unsupervised algorithm is combined with a dimensionality reduction and alignment method to overcome decoder instabilities. The effectiveness of the BMI stabilizer method is represented by decoding the two-dimensional (2D) hand velocity of two rhesus macaque monkeys during a center-out-reaching movement task. The performance of the proposed method is evaluated using correlation coefficient and -squared measures, demonstrating higher decoding performance compared to a state-of-the-art unsupervised BMI stabilizer. The results offer benefits for the automatic determination of movement intents in long-term BMI decoding. Overall, the proposed method offers a promising automatic solution for achieving stable and accurate movement decoding in BMI applications.
使用神经活动稳定地解码运动参数对于脑机接口 (BMI) 的成功至关重要。然而,神经活动随时间可能不稳定,导致用于解码运动的参数发生变化,从而阻碍准确的运动解码。为了解决这个问题,一种方法是使用降维技术将神经活动转移到稳定的低维流形上,并通过最大化流形之间的相关性来对齐会话之间的流形。然而,流形稳定技术的实际应用需要了解真实的主体意图,例如目标方向或行为状态。为了克服这个限制,提出了一种自动无监督算法,该算法在存在流形旋转和跨会话缩放的情况下,在进行流形对齐之前确定运动目标意图。将这种无监督算法与降维和对齐方法相结合,以克服解码器的不稳定性。BMI 稳定器方法的有效性通过解码两只恒河猴在中心向外伸手运动任务中的二维 (2D) 手速度来表示。使用相关系数和平方度量来评估所提出方法的性能,与最先进的无监督 BMI 稳定器相比,该方法表现出更高的解码性能。结果为长期 BMI 解码中自动确定运动意图提供了益处。总体而言,所提出的方法为 BMI 应用中的稳定和准确运动解码提供了有前途的自动解决方案。