Suppr超能文献

基于状态的手和手指运动学解码,使用神经元集合和 LFPs 活动,用于灵巧的伸手抓握运动。

State-based decoding of hand and finger kinematics using neuronal ensemble and LFP activity during dexterous reach-to-grasp movements.

机构信息

Dept. of Biomedical Engineering, Johns Hopkins Univ, Baltimore, MD, USA.

出版信息

J Neurophysiol. 2013 Jun;109(12):3067-81. doi: 10.1152/jn.01038.2011. Epub 2013 Mar 27.

Abstract

The performance of brain-machine interfaces (BMIs) that continuously control upper limb neuroprostheses may benefit from distinguishing periods of posture and movement so as to prevent inappropriate movement of the prosthesis. Few studies, however, have investigated how decoding behavioral states and detecting the transitions between posture and movement could be used autonomously to trigger a kinematic decoder. We recorded simultaneous neuronal ensemble and local field potential (LFP) activity from microelectrode arrays in primary motor cortex (M1) and dorsal (PMd) and ventral (PMv) premotor areas of two male rhesus monkeys performing a center-out reach-and-grasp task, while upper limb kinematics were tracked with a motion capture system with markers on the dorsal aspect of the forearm, hand, and fingers. A state decoder was trained to distinguish four behavioral states (baseline, reaction, movement, hold), while a kinematic decoder was trained to continuously decode hand end point position and 18 joint angles of the wrist and fingers. LFP amplitude most accurately predicted transition into the reaction (62%) and movement (73%) states, while spikes most accurately decoded arm, hand, and finger kinematics during movement. Using an LFP-based state decoder to trigger a spike-based kinematic decoder [r = 0.72, root mean squared error (RMSE) = 0.15] significantly improved decoding of reach-to-grasp movements from baseline to final hold, compared with either a spike-based state decoder combined with a spike-based kinematic decoder (r = 0.70, RMSE = 0.17) or a spike-based kinematic decoder alone (r = 0.67, RMSE = 0.17). Combining LFP-based state decoding with spike-based kinematic decoding may be a valuable step toward the realization of BMI control of a multifingered neuroprosthesis performing dexterous manipulation.

摘要

脑机接口 (BMI) 持续控制上肢神经假体的性能可能受益于区分姿势和运动期,以防止假体的不当运动。然而,很少有研究调查如何自主解码行为状态和检测姿势与运动之间的转换,以触发运动学解码器。我们记录了两只雄性恒河猴在执行中心外伸手抓握任务时,来自初级运动皮层 (M1) 和背侧 (PMd) 和腹侧 (PMv) 前运动区的微电极阵列的同时神经元集合和局部场电位 (LFP) 活动,而上肢运动学则通过带有标记的运动捕捉系统进行跟踪前臂、手和手指的背侧。训练状态解码器以区分四种行为状态(基线、反应、运动、握持),同时训练运动解码器以连续解码手端点位置和手腕和手指的 18 个关节角度。LFP 幅度最准确地预测了进入反应(62%)和运动(73%)状态的转变,而尖峰最准确地解码了运动过程中的手臂、手和手指运动学。使用基于 LFP 的状态解码器来触发基于尖峰的运动学解码器 [r = 0.72,均方根误差 (RMSE) = 0.15] 与基于尖峰的状态解码器与基于尖峰的运动学解码器的组合 (r = 0.70,RMSE = 0.17) 或单独的基于尖峰的运动学解码器 (r = 0.67,RMSE = 0.17) 相比,显著提高了从基线到最终握持的伸手抓握运动的解码。结合基于 LFP 的状态解码和基于尖峰的运动学解码可能是实现多手指神经假体进行灵巧操作的 BMI 控制的一个有价值的步骤。

相似文献

2
Decoding of finger, hand and arm kinematics using switching linear dynamical systems with pre-motor cortical ensembles.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:1732-5. doi: 10.1109/EMBC.2012.6346283.
3
Encoding of Both Reaching and Grasping Kinematics in Dorsal and Ventral Premotor Cortices.
J Neurosci. 2017 Feb 15;37(7):1733-1746. doi: 10.1523/JNEUROSCI.1537-16.2016. Epub 2017 Jan 11.
4
Principal components of hand kinematics and neurophysiological signals in motor cortex during reach to grasp movements.
J Neurophysiol. 2014 Oct 15;112(8):1857-70. doi: 10.1152/jn.00481.2013. Epub 2014 Jul 2.
7
Decoding individuated finger movements using volume-constrained neuronal ensembles in the M1 hand area.
IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):15-23. doi: 10.1109/TNSRE.2007.916269.
8
Asynchronous decoding of dexterous finger movements using M1 neurons.
IEEE Trans Neural Syst Rehabil Eng. 2008 Feb;16(1):3-14. doi: 10.1109/TNSRE.2007.916289.
10
Neural control of finger movement via intracortical brain-machine interface.
J Neural Eng. 2017 Dec;14(6):066004. doi: 10.1088/1741-2552/aa80bd.

引用本文的文献

1
Protocol for state-based decoding of hand movement parameters using neural signals.
STAR Protoc. 2024 Dec 20;5(4):103503. doi: 10.1016/j.xpro.2024.103503. Epub 2024 Dec 12.
2
Decoding hand kinetics and kinematics using somatosensory cortex activity in active and passive movement.
iScience. 2023 Sep 1;26(10):107808. doi: 10.1016/j.isci.2023.107808. eCollection 2023 Oct 20.
3
Robust cortical encoding of 3D tongue shape during feeding in macaques.
Nat Commun. 2023 May 24;14(1):2991. doi: 10.1038/s41467-023-38586-3.
4
Cortico-cortical drive in a coupled premotor-primary motor cortex dynamical system.
Cell Rep. 2022 Dec 20;41(12):111849. doi: 10.1016/j.celrep.2022.111849.
5
The science and engineering behind sensitized brain-controlled bionic hands.
Physiol Rev. 2022 Apr 1;102(2):551-604. doi: 10.1152/physrev.00034.2020. Epub 2021 Sep 20.
6
Real-time linear prediction of simultaneous and independent movements of two finger groups using an intracortical brain-machine interface.
Neuron. 2021 Oct 6;109(19):3164-3177.e8. doi: 10.1016/j.neuron.2021.08.009. Epub 2021 Sep 8.
7
Systems Neuroengineering: Understanding and Interacting with the Brain.
Engineering (Beijing). 2015 Sep;1(3):292-308. doi: 10.15302/j-eng-2015078. Epub 2016 Mar 16.
9
A low-power band of neuronal spiking activity dominated by local single units improves the performance of brain-machine interfaces.
Nat Biomed Eng. 2020 Oct;4(10):973-983. doi: 10.1038/s41551-020-0591-0. Epub 2020 Jul 27.
10
State-aware detection of sensory stimuli in the cortex of the awake mouse.
PLoS Comput Biol. 2019 May 31;15(5):e1006716. doi: 10.1371/journal.pcbi.1006716. eCollection 2019 May.

本文引用的文献

1
Reach and grasp by people with tetraplegia using a neurally controlled robotic arm.
Nature. 2012 May 16;485(7398):372-5. doi: 10.1038/nature11076.
3
Different origins of gamma rhythm and high-gamma activity in macaque visual cortex.
PLoS Biol. 2011 Apr;9(4):e1000610. doi: 10.1371/journal.pbio.1000610. Epub 2011 Apr 12.
5
Decoding complete reach and grasp actions from local primary motor cortex populations.
J Neurosci. 2010 Jul 21;30(29):9659-69. doi: 10.1523/JNEUROSCI.5443-09.2010.
6
Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid.
Bioresour Technol. 2011 Jan;102(1):88-93. doi: 10.1016/j.biortech.2010.05.021. Epub 2010 May 31.
7
Decoding 3-D reach and grasp kinematics from high-frequency local field potentials in primate primary motor cortex.
IEEE Trans Biomed Eng. 2010 Jul;57(7):1774-84. doi: 10.1109/TBME.2010.2047015. Epub 2010 Apr 15.
8
Cortical decoding of individual finger and wrist kinematics for an upper-limb neuroprosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:4535-8. doi: 10.1109/IEMBS.2009.5334129.
9
Brain control of movement execution onset using local field potentials in posterior parietal cortex.
J Neurosci. 2009 Nov 11;29(45):14363-70. doi: 10.1523/JNEUROSCI.2081-09.2009.
10
From neurons to circuits: linear estimation of local field potentials.
J Neurosci. 2009 Nov 4;29(44):13785-96. doi: 10.1523/JNEUROSCI.2390-09.2009.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验