Suppr超能文献

无人机辅助无线通信的聚类与波束宽度优化

Clustering and Beamwidth Optimization for UAV-Assisted Wireless Communication.

作者信息

Zhao Weidong, Zhang Jun, Li Dongxing

机构信息

College of Telecommunication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China.

Information Engineering College, Chuzhou Polytechnic, Chuzhou 239000, China.

出版信息

Sensors (Basel). 2023 Dec 4;23(23):9614. doi: 10.3390/s23239614.

Abstract

With the development of wireless communication technology, unmanned aerial vehicles (UAV) are now widely used in many complex communication scenarios. When a UAV serves as an aerial base station for urban and rural ground users or marine users, it is necessary to consider the clustering of ground users and the energy efficiency of the UAV since the users are usually randomly distributed. For the scenario with randomly distributed ground users and different densities of ground users in urban and rural areas, a clustering and beamwidth optimization method for UAV-assisted wireless communication is proposed. Firstly, the energy efficiency expression of a UAV serving ground users was derived in a downlink wireless communication system assisted by a UAV. Secondly, based on the geographical location information of non-uniformly distributed users, an improved k-means method is proposed to cluster ground users, ensuring that the number of users in each cluster is within an appropriate range. Then, based on the clustering results, a fixed-point iteration (FPI) algorithm was proposed to design the optimal beamwidth of UAVs and improve their energy efficiency. Finally, the superiority of the proposed algorithm in improving energy efficiency was verified through simulation analysis, and the impact of parameters such as the cluster number and transmission power on system energy efficiency was also analyzed.

摘要

随着无线通信技术的发展,无人机(UAV)如今广泛应用于许多复杂的通信场景。当无人机作为城乡地面用户或海洋用户的空中基站时,由于用户通常是随机分布的,有必要考虑地面用户的聚类以及无人机的能量效率。针对地面用户随机分布且城乡地区地面用户密度不同的场景,提出了一种无人机辅助无线通信的聚类与波束宽度优化方法。首先,在无人机辅助的下行无线通信系统中推导了无人机为地面用户服务时的能量效率表达式。其次,基于非均匀分布用户的地理位置信息,提出一种改进的k均值方法对地面用户进行聚类,确保每个聚类中的用户数量在适当范围内。然后,基于聚类结果,提出一种定点迭代(FPI)算法来设计无人机的最优波束宽度并提高其能量效率。最后,通过仿真分析验证了所提算法在提高能量效率方面的优越性,还分析了聚类数和发射功率等参数对系统能量效率的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8294/10708772/2cafba0ad524/sensors-23-09614-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验