Rekioua D, Mokrani Z, Kakouche K, Rekioua T, Oubelaid A, Logerais P O, Ali Enas, Bajaj Mohit, Berhanu Milkias, Ghoneim Sherif S M
Laboratoire LTII, Faculté de Technologie, Université de Bejaia, 06000, Bejaïa, Algeria.
CERTES, IUT de Sénart-Fontainebleau, Univ. Paris-Est, Lieusaint, France.
Sci Rep. 2023 Dec 9;13(1):21830. doi: 10.1038/s41598-023-49067-4.
In this paper, a critical issue related to power management control in autonomous hybrid systems is presented. Specifically, challenges in optimizing the performance of energy sources and backup systems are proposed, especially under conditions of heavy loads or low renewable energy output. The problem lies in the need for an efficient control mechanism that can enhance power availability while protecting and extending the lifespan of the various power sources in the system. Furthermore, it is necessary to adapt the system's operations to variations in climatic conditions for sustained effectiveness. To address the identified problem. It is proposed the use of an intelligent power management control (IPMC) system employing fuzzy logic control (FLC). The IPMC is designed to optimize the performance of energy sources and backup systems. It aims to predict and adjust the system's operating processes based on variations in climatic conditions, providing a dynamic and adaptive control strategy. The integration of FLC is specifically emphasized for its effectiveness in balancing multiple power sources and ensuring a steady and secure operation of the system. The proposed IPMC with FLC offers several advantages over existing strategies. Firstly, it showcases enhanced power availability, particularly under challenging conditions such as heavy loads or low renewable energy output. Secondly, the system protects and extends the lifespan of the power sources, contributing to long-term sustainability. The dynamic adaptation to climatic variations adds a layer of resilience to the system, making it well-suited for diverse geographical and climatic conditions. The use of realistic data and simulations in MATLAB/Simulink, along with real-time findings from the RT-LAB simulator, indicates the reliability and practical applicability of the proposed IPMC strategy. Efficient load supply and preserved batteries further underscore the benefits of the fuzzy logic-based control strategy in achieving a well-balanced and secure system operation.
本文提出了一个与自主混合系统中的电源管理控制相关的关键问题。具体而言,提出了在优化能源和备用系统性能方面所面临的挑战,尤其是在重负载或可再生能源输出较低的情况下。问题在于需要一种高效的控制机制,既能提高电力可用性,又能保护并延长系统中各种电源的使用寿命。此外,有必要使系统的运行适应气候条件的变化,以保持持续有效性。为了解决所确定的问题,建议使用一种采用模糊逻辑控制(FLC)的智能电源管理控制(IPMC)系统。IPMC旨在优化能源和备用系统的性能。它旨在根据气候条件的变化预测并调整系统的运行过程,提供一种动态且自适应的控制策略。特别强调了FLC的集成,因为它在平衡多个电源和确保系统稳定安全运行方面具有有效性。所提出的带有FLC的IPMC相对于现有策略具有多个优势。首先,它在诸如重负载或可再生能源输出较低等具有挑战性的条件下展现出更高的电力可用性。其次,该系统保护并延长了电源的使用寿命,有助于实现长期可持续性。对气候变化的动态适应为系统增添了一层弹性,使其非常适合不同的地理和气候条件。在MATLAB/Simulink中使用实际数据和仿真,以及RT-LAB模拟器的实时结果,表明了所提出的IPMC策略的可靠性和实际适用性。高效的负载供应和电池保护进一步突出了基于模糊逻辑的控制策略在实现平衡且安全的系统运行方面的优势。