Dyksik Mateusz, Beret Dorian, Baranowski Michal, Duim Herman, Moyano Sébastien, Posmyk Katarzyna, Mlayah Adnen, Adjokatse Sampson, Maude Duncan K, Loi Maria Antonietta, Puech Pascal, Plochocka Paulina
Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, 50370, Poland.
CEMES-UPR8011, CNRS, University of Toulouse, 29 rue Jeanne Marvig, Toulouse, 31500, France.
Adv Sci (Weinh). 2024 Feb;11(7):e2305182. doi: 10.1002/advs.202305182. Epub 2023 Dec 10.
The optical response of 2D layered perovskites is composed of multiple equally-spaced spectral features, often interpreted as phonon replicas, separated by an energy Δ ≃ 12 - 40 meV, depending upon the compound. Here the authors show that the characteristic energy spacing, seen in both absorption and emission, is correlated with a substantial scattering response above ≃ 200 cm (≃ 25 meV) observed in resonant Raman. This peculiar high-frequency signal, which dominates both Stokes and anti-Stokes regions of the scattering spectra, possesses the characteristic spectral fingerprints of polarons. Notably, its spectral position is shifted away from the Rayleigh line, with a tail on the high energy side. The internal structure of the polaron consists of a series of equidistant signals separated by 25-32 cm (3-4 meV), depending upon the compound, forming a polaron vibronic progression. The observed progression is characterized by a large Huang-Rhys factor (S > 6) for all of the 2D layered perovskites investigated here, indicative of a strong charge carrier - lattice coupling. The polaron binding energy spans a range ≃ 20-35 meV, which is corroborated by the temperature-dependent Raman scattering data. The investigation provides a complete understanding of the optical response of 2D layered perovskites via the direct observation of polaron vibronic progression. The understanding of polaronic effects in perovskites is essential, as it directly influences the suitability of these materials for future opto-electronic applications.
二维层状钙钛矿的光学响应由多个等间距的光谱特征组成,这些特征通常被解释为声子复制品,其能量间隔Δ≃12 - 40毫电子伏特,具体取决于化合物。本文作者表明,在吸收和发射中都能看到的特征能量间隔,与共振拉曼光谱中在≃200厘米⁻¹(≃25毫电子伏特)以上观察到的显著散射响应相关。这种特殊的高频信号在散射光谱的斯托克斯和反斯托克斯区域均占主导地位,具有极化子的特征光谱指纹。值得注意的是,其光谱位置偏离瑞利线,在高能侧有一个拖尾。极化子的内部结构由一系列等间距的信号组成,间隔为25 - 32厘米⁻¹(3 - 4毫电子伏特),具体取决于化合物,形成极化子振动谱带序列。对于本文研究的所有二维层状钙钛矿,观察到的谱带序列的特征是具有较大的黄 - 里斯因子(S > 6),这表明电荷载流子与晶格之间存在强耦合。极化子结合能范围约为≃20 - 35毫电子伏特,这与温度依赖的拉曼散射数据相符。该研究通过直接观察极化子振动谱带序列,全面理解了二维层状钙钛矿的光学响应。理解钙钛矿中的极化子效应至关重要,因为它直接影响这些材料在未来光电子应用中的适用性。