Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China.
Multi-Scale Medical Robotics Center, Hong Kong, 999077, China.
Adv Sci (Weinh). 2024 Feb;11(7):e2305495. doi: 10.1002/advs.202305495. Epub 2023 Dec 10.
Magnetic resonance imaging (MRI) demonstrates clear advantages over other imaging modalities in neurosurgery with its ability to delineate critical neurovascular structures and cancerous tissue in high-resolution 3D anatomical roadmaps. However, its application has been limited to interventions performed based on static pre/post-operative imaging, where errors accrue from stereotactic frame setup, image registration, and brain shift. To leverage the powerful intra-operative functions of MRI, e.g., instrument tracking, monitoring of physiological changes and tissue temperature in MRI-guided bilateral stereotactic neurosurgery, a multi-stage robotic positioner is proposed. The system positions cannula/needle instruments using a lightweight (203 g) and compact (Ø97 × 81 mm) skull-mounted structure that fits within most standard imaging head coils. With optimized design in soft robotics, the system operates in two stages: i) manual coarse adjustment performed interactively by the surgeon (workspace of ±30°), ii) automatic fine adjustment with precise (<0.2° orientation error), responsive (1.4 Hz bandwidth), and high-resolution (0.058°) soft robotic positioning. Orientation locking provides sufficient transmission stiffness (4.07 N/mm) for instrument advancement. The system's clinical workflow and accuracy is validated with lab-based (<0.8 mm) and MRI-based testing on skull phantoms (<1.7 mm) and a cadaver subject (<2.2 mm). Custom-made wireless omni-directional tracking markers facilitated robot registration under MRI.
磁共振成像(MRI)在神经外科中具有明显优于其他成像方式的优势,它能够以高分辨率的 3D 解剖学路线图清晰地描绘出关键的神经血管结构和癌组织。然而,其应用仅限于基于静态术前/术后成像的干预,在此过程中,立体定向框架设置、图像配准和脑移位会导致误差。为了利用 MRI 强大的术中功能,例如在 MRI 引导的双侧立体定向神经外科中进行器械跟踪、监测生理变化和组织温度,我们提出了一种多阶段机器人定位器。该系统使用重量轻(203g)、体积小(Ø97×81mm)的颅骨安装结构来定位套管/针器械,该结构可安装在大多数标准成像头部线圈内。通过软机器人的优化设计,该系统分两个阶段运行:i)由外科医生交互式进行手动粗调(工作空间为±30°),ii)采用自动微调,具有精确(<0.2°的定位误差)、响应迅速(1.4Hz 带宽)和高分辨率(0.058°)的软机器人定位。定位锁定提供了足够的传输刚度(4.07N/mm),以实现器械推进。该系统的临床工作流程和准确性已通过实验室测试(<0.8mm)和颅骨模型(<1.7mm)以及尸体(<2.2mm)的 MRI 测试得到验证。定制的无线全向跟踪标记有助于机器人在 MRI 下进行注册。