Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China.
Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China.
Adv Sci (Weinh). 2024 Feb;11(6):e2306336. doi: 10.1002/advs.202306336. Epub 2023 Dec 10.
A critical challenge of existing cancer vaccines is to orchestrate the demands of antigen-enriched furnishment and optimal antigen-presentation functionality within antigen-presenting cells (APCs). Here, a complementary immunotherapeutic strategy is developed using dendritic cell (DC)-tumor hybrid cell-derived chimeric exosomes loaded with stimulator of interferon genes (STING) agonists (DT-Exo-STING) for maximized tumor-specific T-cell immunity. These chimeric carriers are furnished with broad-spectrum antigen complexes to elicit a robust T-cell-mediated inflammatory program through direct self-presentation and indirect DC-to-T immunostimulatory pathway. This chimeric exosome-assisted delivery strategy possesses the merits versus off-the-shelf cyclic dinucleotide (CDN) delivery techniques in both the brilliant tissue-homing capacity, even across the intractable blood-brain barrier (BBB), and the desired cytosolic entry for enhanced STING-activating signaling. The improved antigen-presentation performance with this nanovaccine-driven STING activation further enhances tumor-specific T-cell immunoresponse. Thus, DT-Exo-STING reverses immunosuppressive glioblastoma microenvironments to pro-inflammatory, tumoricidal states, leading to an almost obliteration of intracranial primary lesions. Significantly, an upscaling option that harnesses autologous tumor tissues for personalized DT-Exo-STING vaccines increases sensitivity to immune checkpoint blockade (ICB) therapy and exerts systemic immune memory against post-operative glioma recrudesce. These findings represent an emerging method for glioblastoma immunotherapy, warranting further exploratory development in the clinical realm.
现有的癌症疫苗面临的一个关键挑战是协调富含抗原的供应和抗原呈递细胞 (APCs) 内最佳抗原呈递功能的需求。在这里,开发了一种使用树突状细胞 (DC)-肿瘤杂交细胞衍生的嵌合外体负载干扰素基因刺激物 (STING) 激动剂 (DT-Exo-STING) 的互补免疫治疗策略,以最大限度地提高肿瘤特异性 T 细胞免疫。这些嵌合载体配备了广谱抗原复合物,通过直接自我呈递和间接 DC 向 T 免疫刺激途径引发强大的 T 细胞介导的炎症程序。与即用型环二核苷酸 (CDN) 递送技术相比,这种嵌合外体辅助递送策略具有许多优点,包括出色的组织归巢能力,甚至可以跨越难以穿透的血脑屏障 (BBB),以及增强 STING 激活信号所需的细胞质内进入。这种纳米疫苗驱动的 STING 激活提高了抗原呈递性能,进一步增强了肿瘤特异性 T 细胞免疫反应。因此,DT-Exo-STING 逆转了免疫抑制性胶质母细胞瘤微环境,使其向促炎、杀瘤状态转变,导致颅内原发性病变几乎完全消除。值得注意的是,利用自体肿瘤组织进行个体化 DT-Exo-STING 疫苗的放大选项增加了对免疫检查点阻断 (ICB) 治疗的敏感性,并对术后胶质瘤复发产生了系统性免疫记忆。这些发现代表了胶质母细胞瘤免疫治疗的一种新方法,值得在临床领域进一步探索性开发。