文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

响应性多泡聚合物纳米疫苗,共递送 STING 激动剂和新抗原用于联合肿瘤免疫治疗。

Responsive Multivesicular Polymeric Nanovaccines that Codeliver STING Agonists and Neoantigens for Combination Tumor Immunotherapy.

机构信息

Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.

Department of Pharmaceutics and Center for Pharmaceutical Engineering and Sciences; Institute for Structural Biology and Drug Discovery, School of Pharmacy; The Developmental Therapeutics Program, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA.

出版信息

Adv Sci (Weinh). 2022 Aug;9(23):e2201895. doi: 10.1002/advs.202201895. Epub 2022 Jun 16.


DOI:10.1002/advs.202201895
PMID:35712773
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9376841/
Abstract

Immune checkpoint blockade (ICB) has significantly advanced cancer immunotherapy, yet its patient response rates are generally low. Vaccines, including immunostimulant-adjuvanted peptide antigens, can improve ICB. The emerging neoantigens generated by cancer somatic mutations elicit cancer-specific immunity for personalized immunotherapy; the novel cyclic dinucleotide (CDN) adjuvants activate stimulator of interferon genes (STING) for antitumor type I interferon (IFN-I) responses. However, CDN/neoantigen vaccine development has been limited by the poor antigen/adjuvant codelivery. Here, pH-responsive CDN/neoantigen codelivering nanovaccines (NVs) for ICB combination tumor immunotherapy are reported. pH-responsive polymers are synthesized to be self-assembled into multivesicular nanoparticles (NPs) at physiological pH and disassembled at acidic conditions. NPs with high CDN/antigen coloading are selected as NVs for CDN/antigen codelivery to antigen presenting cells (APCs) in immunomodulatory lymph nodes (LNs). In the acidic endosome of APCs, pH-responsive NVs facilitate the vaccine release and escape into cytosol, where CDNs activate STING for IFN-I responses and antigens are presented by major histocompatibility complex (MHC) for T-cell priming. In mice, NVs elicit potent antigen-specific CD8 T-cell responses with immune memory, and reduce multifaceted tumor immunosuppression. In syngeneic murine tumors, NVs show robust ICB combination therapeutic efficacy. Overall, these CDN/neoantigen-codelivering NVs hold the potential for ICB combination tumor immunotherapy.

摘要

免疫检查点阻断 (ICB) 显著推动了癌症免疫疗法的发展,但患者的响应率通常较低。疫苗,包括免疫佐剂增强的肽抗原,可以提高 ICB 的效果。癌症体细胞突变产生的新兴新抗原引发针对个体肿瘤的特异性免疫,新型环状二核苷酸 (CDN) 佐剂激活干扰素基因刺激物 (STING) 以产生抗肿瘤 I 型干扰素 (IFN-I) 反应。然而,CDN/新抗原疫苗的开发受到抗原/佐剂共递送效果不佳的限制。本研究报道了用于 ICB 联合肿瘤免疫治疗的 pH 响应型 CDN/新抗原共递纳米疫苗 (NVs)。合成 pH 响应型聚合物,在生理 pH 下自组装成多泡纳米颗粒 (NPs),在酸性条件下解组装。选择具有高 CDN/抗原共载量的 NPs 作为 NVs,用于在免疫调节淋巴结 (LNs) 中向抗原呈递细胞 (APC) 共递 CDN/抗原。在 APC 的酸性内涵体中,pH 响应型 NVs 促进疫苗的释放和逃逸到细胞质中,CDNs 在细胞质中激活 STING 以产生 IFN-I 反应,抗原由主要组织相容性复合物 (MHC) 呈递以进行 T 细胞启动。在小鼠中,NVs 引发具有免疫记忆的强烈的抗原特异性 CD8 T 细胞反应,并减轻多种肿瘤免疫抑制。在同种异体小鼠肿瘤中,NVs 表现出强大的 ICB 联合治疗疗效。总之,这些共递 CDN/新抗原的 NVs 具有用于 ICB 联合肿瘤免疫治疗的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/f84d9c8d3c6b/ADVS-9-2201895-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/d5b9987c502c/ADVS-9-2201895-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/7f6ad0c1d4b5/ADVS-9-2201895-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/45b626e53303/ADVS-9-2201895-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/be1e3fb91910/ADVS-9-2201895-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/5cfd8d4a612c/ADVS-9-2201895-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/82b284dbe820/ADVS-9-2201895-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/428d970a66ec/ADVS-9-2201895-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/f84d9c8d3c6b/ADVS-9-2201895-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/d5b9987c502c/ADVS-9-2201895-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/7f6ad0c1d4b5/ADVS-9-2201895-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/45b626e53303/ADVS-9-2201895-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/be1e3fb91910/ADVS-9-2201895-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/5cfd8d4a612c/ADVS-9-2201895-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/82b284dbe820/ADVS-9-2201895-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/428d970a66ec/ADVS-9-2201895-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/515d/9376841/f84d9c8d3c6b/ADVS-9-2201895-g001.jpg

相似文献

[1]
Responsive Multivesicular Polymeric Nanovaccines that Codeliver STING Agonists and Neoantigens for Combination Tumor Immunotherapy.

Adv Sci (Weinh). 2022-8

[2]
Ionizable polymeric nanocarriers for the codelivery of bi-adjuvant and neoantigens in combination tumor immunotherapy.

Bioact Mater. 2023-8

[3]
A Cancer Nanovaccine for Co-Delivery of Peptide Neoantigens and Optimized Combinations of STING and TLR4 Agonists.

ACS Nano. 2024-3-5

[4]
Engineering and Delivery of cGAS-STING Immunomodulators for the Immunotherapy of Cancer and Autoimmune Diseases.

Acc Chem Res. 2023-11-7

[5]
pH-Responsive STING-Activating DNA Nanovaccines for Cancer Immunotherapy.

Adv Ther (Weinh). 2020-9

[6]
Lymph node-targeting adjuvant/neoantigen-codelivering vaccines for combination glioblastoma radioimmunotherapy.

Theranostics. 2023

[7]
Engineering Polymeric Prodrug Nanoplatform for Vaccination Immunotherapy of Cancer.

Nano Lett. 2020-6-10

[8]
Engineering cGAS-agonistic oligonucleotides as therapeutics and vaccine adjuvants for cancer immunotherapy.

bioRxiv. 2023-7-13

[9]
Rational Design of T-Cell- and B-Cell-Based Therapeutic Cancer Vaccines.

Acc Chem Res. 2022-9-20

[10]
MuSyC dosing of adjuvanted cancer vaccines optimizes antitumor responses.

Front Immunol. 2022

引用本文的文献

[1]
Biomaterials nanoplatform-based tumor vaccines for immunotherapy.

Bioact Mater. 2025-6-30

[2]
Promising future of breast cancer vaccine asking for multidisciplinary collaboration: a literature review.

Front Cell Dev Biol. 2025-4-24

[3]
Progress Update on STING Agonists as Vaccine Adjuvants.

Vaccines (Basel). 2025-3-31

[4]
Cancer Nanovaccines: Mechanisms, Design Principles, and Clinical Translation.

ACS Nano. 2025-5-6

[5]
Unveiling the crossroads of STING signaling pathway and metabolic reprogramming: the multifaceted role of the STING in the TME and new prospects in cancer therapies.

Cell Commun Signal. 2025-4-7

[6]
Cascaded immunotherapy with implantable dual-drug depots sequentially releasing STING agonists and apoptosis inducers.

Nat Commun. 2025-2-14

[7]
Nanocarrier-mediated modulation of cGAS-STING signaling pathway to disrupt tumor microenvironment.

Naunyn Schmiedebergs Arch Pharmacol. 2025-2-5

[8]
Nano-Oncologic Vaccine for Boosting Cancer Immunotherapy: The Horizons in Cancer Treatment.

Nanomaterials (Basel). 2025-1-16

[9]
Activation of the cGAS-sting Pathway Mediated by Nanocomplexes for Tumor Therapy.

Curr Pharm Des. 2025-1-16

[10]
Application of nanomedicines in tumor immunotherapy.

J Mol Cell Biol. 2025-6-12

本文引用的文献

[1]
Polymeric micelles amplify tumor oxidative stresses through combining PDT and glutathione depletion for synergistic cancer chemotherapy.

Chem Eng J. 2021-5-1

[2]
Type I interferon activates MHC class I-dressed CD11b conventional dendritic cells to promote protective anti-tumor CD8 T cell immunity.

Immunity. 2022-2-8

[3]
Characterization of neoantigen-specific T cells in cancer resistant to immune checkpoint therapies.

Proc Natl Acad Sci U S A. 2021-7-27

[4]
Navigating CAR-T cells through the solid-tumour microenvironment.

Nat Rev Drug Discov. 2021-7

[5]
Metabolic barriers to cancer immunotherapy.

Nat Rev Immunol. 2021-12

[6]
Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity.

Nat Cancer. 2020-2

[7]
Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments.

Front Immunol. 2020

[8]
Nanobiomaterial-based vaccination immunotherapy of cancer.

Biomaterials. 2021-3

[9]
PD-L1 as a biomarker of response to immune-checkpoint inhibitors.

Nat Rev Clin Oncol. 2021-6

[10]
Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma.

Nat Med. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索