Shun Kazuki, Matsukawa Satoshi, Mori Kohsuke, Yamashita Hiromi
Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565-0871, Japan.
Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
Small. 2024 May;20(19):e2306765. doi: 10.1002/smll.202306765. Epub 2023 Dec 10.
The phenomenon of hydrogen spillover is investigated as a means of realizing a hydrogen-based society for over half a century. Herein, a graphene oxide having a precisely tuned architecture via calcination in air to introduce ether groups onto basal planes along with carbon defects is reported. This material provides specific pathways for the spillover of atomic hydrogen and has practical applications with regard to the synthesis of non-equilibrium solid-solution alloy nanoparticles. A combination of experimental work and simulations confirmed that the presence of ether groups associated with carbon defects facilitated hydrogen spillover within the basal planes of this graphene oxide. This enhanced hydrogen spillover ability, in turn, enables the simultaneous reduction of Ru and Ni ions to form RuNi alloy nanoparticles under hydrogen reduction conditions. Energy dispersive X-ray and X-ray absorption near edge structure simulations establish that this strategy forms unique alloy nanoparticles each comprising a Ru core with a RuNi solid-solution shell having a hexagonal close-packed structure. These non-equilibrium RuNi alloy nanoparticles exhibit greater catalytic activity than monometallic Ru nanoparticles during the hydrolysis of ammonia borane.
半个多世纪以来,人们一直在研究氢溢流现象,将其作为实现氢基社会的一种手段。在此,报道了一种通过在空气中煅烧精确调整结构的氧化石墨烯,以便在基面引入醚基并同时产生碳缺陷。这种材料为原子氢的溢流提供了特定途径,在非平衡固溶合金纳米颗粒的合成方面具有实际应用价值。实验工作与模拟相结合证实,与碳缺陷相关的醚基的存在促进了这种氧化石墨烯基面内的氢溢流。这种增强的氢溢流能力进而使得在氢还原条件下能够同时还原Ru和Ni离子以形成RuNi合金纳米颗粒。能量色散X射线和X射线吸收近边结构模拟表明,该策略形成了独特的合金纳米颗粒,每个颗粒都包含一个Ru核以及一个具有六方密堆积结构的RuNi固溶壳。在氨硼烷水解过程中,这些非平衡RuNi合金纳米颗粒比单金属Ru纳米颗粒表现出更高的催化活性。