Bogdanović Nebojša, Segura-Covarrubias Guadalupe, Zhang Lisa, Tajima Nami
Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Ohio, 44106, USA.
Equal contribution.
Res Sq. 2023 Dec 2:rs.3.rs-3592604. doi: 10.21203/rs.3.rs-3592604/v1.
Kainate receptors (KARs) belong to the family of ionotropic glutamate receptors (iGluRs) and are tetrameric ligand-gated ion channels that regulate neurotransmitter release and excitatory synaptic transmission in the central nervous system. While KARs share overall architectures with other iGluR subfamilies, their dynamics are significantly different from those of other iGluRs. KARs are activated by both full and partial agonists. While there is less efficacy with partial agonists than with full agonists, the detailed mechanism has remained elusive. Here, we used cryo-electron microscopy to determine the structures of homomeric rat GluK2 KARs in the absence of ligands (apo) and in complex with a partial agonist. Intriguingly, the apo state KARs were captured in desensitized conformation. This structure confirms the KAR desensitization prior to activation. Structures of KARs complexed to the partial agonist domoate populate in domoate bound desensitized and non-active/non-desensitized states. These previously unseen intermediate structures highlight the molecular mechanism of partial agonism in KARs. Additionally, we show how -glycans stabilized the ligand-binding domain dimer via cation/anion binding and modulated receptor gating properties using electrophysiology. Our findings provide vital structural and functional insights into the unique KAR gating mechanisms.
红藻氨酸受体(KARs)属于离子型谷氨酸受体(iGluRs)家族,是四聚体配体门控离子通道,可调节中枢神经系统中的神经递质释放和兴奋性突触传递。虽然KARs与其他iGluR亚家族具有整体结构,但它们的动力学与其他iGluRs有显著差异。KARs可被完全激动剂和部分激动剂激活。虽然部分激动剂的效力低于完全激动剂,但其详细机制仍不清楚。在这里,我们使用冷冻电子显微镜来确定同源大鼠GluK2 KARs在无配体(脱辅基)状态下以及与部分激动剂结合时的结构。有趣的是,脱辅基状态的KARs以脱敏构象被捕获。该结构证实了KARs在激活前的脱敏作用。与部分激动剂软骨藻酸结合的KARs结构存在于软骨藻酸结合的脱敏状态和非活性/非脱敏状态。这些以前未见的中间结构突出了KARs中部分激动作用的分子机制。此外,我们展示了聚糖如何通过阳离子/阴离子结合稳定配体结合域二聚体,并使用电生理学调节受体门控特性。我们的研究结果为独特的KAR门控机制提供了重要的结构和功能见解。