Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India.
School of Chemical Sciences, Universiti Sains Malaysia, Gelugor, Minden, Penang 11800 , Malaysia.
ACS Biomater Sci Eng. 2024 Jan 8;10(1):468-481. doi: 10.1021/acsbiomaterials.3c00892. Epub 2023 Dec 11.
Developing biomaterial scaffolds using tissue engineering with physical and chemical surface modification processes can improve the bioactivity and biocompatibility of the materials. The appropriate substrate and site for cell attachment are crucial in cell behavior and biological activities. Therefore, the study aims to develop a conventional electrospun nanofibrous biomaterial using reproducible surface topography, which offers beneficial effects on the cell activities of bone cells. The bioactive MgO/gCN was incorporated on PAN/PEG and fabricated into a nanofibrous membrane using electrospinning. The nanocomposite uniformly distributed on the PAN/PEG nanofiber helps to increase the number of induced pores and reduce the hydrophobicity of PAN. The physiochemical characterization of prepared nanoparticles and nanofibers was carried out using FTIR, X-ray diffraction (XRD), thermogravimetry analysis (TGA), X-ray photoelectron spectroscopy (XPS), and water contact angle measurements. SEM and TEM analyses examined the nanofibrous morphology and the structure of MgO/gCN. In vitro studies such as on ALP activity demonstrated the membrane's ability to regenerate new bone and healing capacity. Furthermore, alizarin red staining showed the increasing ability of the cell-cell interaction and calcium content for tissue regeneration. The cytotoxicity of the prepared membrane was about 97.09% of live THP-1 cells on the surface of the MgO/gCN@PAN/PEG membrane evaluated using MTT dye staining. The soil burial degradation analysis exhibited that the maximum degradation occurs on the 45th day because of microbial activity. In vitro PBS degradation was observed on the 15th day after the bulk hydrolysis mechanism. Hence, on the basis of the study outcomes, we affirm that the MgO/gCN@PAN/PEG nanofibrous membrane can act as a potential bone regenerative substrate.
采用物理和化学表面改性工艺的组织工程方法来开发生物材料支架可以提高材料的生物活性和生物相容性。对于细胞行为和生物活性而言,适当的基底和细胞附着部位是至关重要的。因此,本研究旨在开发一种常规的电纺纳米纤维生物材料,其具有可重复的表面形貌,可对成骨细胞的细胞活性产生有益影响。将生物活性 MgO/gCN 掺入 PAN/PEG 中,并通过静电纺丝将其制成纳米纤维膜。纳米复合材料均匀分布在 PAN/PEG 纳米纤维上有助于增加诱导孔的数量并降低 PAN 的疏水性。采用傅里叶变换红外光谱(FTIR)、X 射线衍射(XRD)、热重分析(TGA)、X 射线光电子能谱(XPS)和水接触角测量对制备的纳米颗粒和纳米纤维进行了理化特性表征。SEM 和 TEM 分析检查了纳米纤维的形态和 MgO/gCN 的结构。体外研究,如碱性磷酸酶(ALP)活性研究,证明了该膜具有再生新骨和愈合能力。此外,茜素红染色显示了细胞间相互作用和钙含量增加的组织再生能力。通过 MTT 染料染色评估,在 MgO/gCN@PAN/PEG 膜表面上,制备的膜的细胞毒性约为活 THP-1 细胞的 97.09%。土壤掩埋降解分析表明,由于微生物的活性,最大降解发生在第 45 天。体外 PBS 降解在 15 天后观察到,这是由于整体水解机制。因此,根据研究结果,我们可以肯定 MgO/gCN@PAN/PEG 纳米纤维膜可以作为一种有潜力的骨再生基底。
ACS Biomater Sci Eng. 2024-1-8
Mater Sci Eng C Mater Biol Appl. 2017-11-1
J Mater Sci Mater Med. 2019-4-22
Mater Sci Eng C Mater Biol Appl. 2019-12-7
J Biomater Sci Polym Ed. 2019-8-8
Mater Sci Eng C Mater Biol Appl. 2020-11
Int J Mol Sci. 2024-10-5