DTU Management, Technical University of Denmark, Bygningstorvet 116, Kgs. Lyngby 2800, Denmark.
DTU Management, Technical University of Denmark, Bygningstorvet 116, Kgs. Lyngby 2800, Denmark.
J Safety Res. 2023 Dec;87:257-265. doi: 10.1016/j.jsr.2023.09.021. Epub 2023 Sep 29.
E-scooters are a new form of mobility used more frequently in urban environments worldwide. As there is evidence of an increased risk of head injuries, helmets are recommended and (less frequently) legislated. Denmark has enacted mandatory e-scooter helmet use legislation from January 1, 2022. So far, it is unclear how this newly implemented law influenced helmet use of e-scooter riders in Denmark immediately after its implementation.
In this observational study, we register and compare e-scooter helmet use before the mandatory helmet use legislation (December 2021) and after (February 2022). As observational survey data collection in the field can be highly time-consuming, we conducted a video-based observation survey. We trained and applied a computer vision algorithm to automatically register e-scooter helmet use in the video data.
The trained algorithm produces accurate helmet use data, which does not differ significantly from human-registered helmet use. In applying the algorithm to video data collected in December 2021 and February 2022, we register an overall e-scooter helmet use of 4.4% in n = 1054 riders. Splitting the observation between the time before and after the implementation of the helmet use law reveals a significant increase in helmet use from 1.80% to 5.56%.
In this study, we successfully train and apply an object detection algorithm to register accurate helmet use data in videos collected in Copenhagen, Denmark. Using this algorithm, we find a significant impact of a new mandatory e-scooter helmet use law on e-scooter riders' helmet use behavior. Limitations of the study as well as future research needs, are discussed.
Computer vision algorithms can be used for accurate e-scooter helmet assessments. Implementing a mandatory helmet use law can increase helmet use of e-scooters at specific observation sites.
电动滑板车是一种在全球城市环境中越来越多地使用的新型交通工具。由于有证据表明头部受伤的风险增加,因此建议(且较少情况下立法要求)佩戴头盔。丹麦已颁布自 2022 年 1 月 1 日起,电动滑板车强制佩戴头盔的法规。到目前为止,尚不清楚该新法规在实施后对丹麦电动滑板车骑手头盔佩戴率的即时影响。
在这项观察性研究中,我们在强制佩戴头盔法规实施之前(2021 年 12 月)和之后(2022 年 2 月)登记并比较电动滑板车头盔佩戴情况。由于在现场进行观测性调查数据收集可能非常耗时,我们进行了基于视频的观测性调查。我们对计算机视觉算法进行了培训并将其应用于自动登记视频数据中的电动滑板车头盔佩戴情况。
训练有素的算法可以生成准确的头盔佩戴数据,其与人工登记的头盔佩戴情况无显著差异。在将算法应用于 2021 年 12 月和 2022 年 2 月收集的视频数据时,我们在 1054 名骑手的整体头盔佩戴率为 4.4%。将观察结果在法规实施前后进行拆分显示,头盔佩戴率从 1.80%显著增加至 5.56%。
在这项研究中,我们成功地训练并应用了目标检测算法,以在丹麦哥本哈根收集的视频中登记准确的头盔佩戴数据。使用该算法,我们发现新的电动滑板车强制佩戴头盔法规对电动滑板车骑手的头盔佩戴行为产生了显著影响。讨论了研究的局限性和未来的研究需求。
计算机视觉算法可用于对电动滑板车头盔进行准确评估。实施强制佩戴头盔法规可以在特定观察点提高电动滑板车的头盔佩戴率。