Reznichenko Serhii, Zhou Shijie
Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340738.
The 12-lead ECG only has 8 independent ECG leads, which leads to diagnostic redundancy when using all 12 leads for heart arrhythmias classification. We have previously developed a deep learning (DL)-based computer-interpreted ECG (CIE) approach to identify an optimal 4-lead ECG subset for classifying heart arrhythmias. However, the clinical diagnostic criteria of cardiac arrhythmia types are often lead-specific, so this study is going to explore the selection of arrhythmia-based ECG-lead subsets rather than one general optimal ECG-lead subset, which could improve the classification performance for the CIE. The DL-based CIE model previously developed was used to learn 4 common types of heart arrhythmias (LBBB, RBBB, AF, and I-AVB) for identifying corresponding optimal ECG-lead subsets. A public dataset that splits into training (approx. 70%), validation (approx. 15%), and test (approx. 15%) sets from the PhysioNet Cardiology Challenge 2020 was used to explore the study. The results demonstrated that the DL-based CIE model identified an optimal ECG-lead subset for each arrhythmia: I, II, aVR, aVL, V1, V3, and V5 for I-AVB; I, II, aVR, and V3 for AF; I, II, aVR, aVF, V1, V3, and V4 for LBBB; and I, II, III, aVR, V1, V4, and V6 for RBBB. For each arrhythmia classification, the DL-based CIE model using the optimal ECG-lead subset significantly outperformed the model using the full 12-lead ECG set on the validation set and on the external test dataset.The results support the hypothesis that using an optimal ECG-lead subset instead of the full 12-lead ECG set can improve the classification performance of a specific arrhythmia when using the DL-based CIE approach.Clinical Relevance- Using an arrhythmia-based optimal ECG-lead subset, the classification performance of a deep-learning-based model can be achieved without loss of accuracy in comparison with the full 12-lead set (p<0.05).
12导联心电图仅有8个独立的心电图导联,这导致在使用全部12个导联进行心律失常分类时出现诊断冗余。我们之前开发了一种基于深度学习(DL)的计算机解读心电图(CIE)方法,以识别用于心律失常分类的最佳4导联心电图子集。然而,心律失常类型的临床诊断标准通常是导联特异性的,因此本研究将探索基于心律失常的心电图导联子集的选择,而非一个通用的最佳心电图导联子集,这可能会提高CIE的分类性能。先前开发的基于DL的CIE模型用于学习4种常见类型的心律失常(左束支传导阻滞、右束支传导阻滞、房颤和一度房室传导阻滞),以识别相应的最佳心电图导联子集。使用了一个来自PhysioNet 2020年心脏病学挑战赛的公共数据集,该数据集被分为训练集(约70%)、验证集(约15%)和测试集(约15%)来进行本研究。结果表明,基于DL的CIE模型为每种心律失常识别出了一个最佳心电图导联子集:一度房室传导阻滞为I、II、aVR、aVL、V1、V3和V5;房颤为I、II、aVR和V3;左束支传导阻滞为I、II、aVR、aVF、V1、V3和V4;右束支传导阻滞为I、II、III、aVR、V1、V4和V6。对于每种心律失常分类,在验证集和外部测试数据集上,使用最佳心电图导联子集的基于DL的CIE模型显著优于使用完整12导联心电图集的模型。这些结果支持了这样一个假设,即当使用基于DL的CIE方法时,使用最佳心电图导联子集而非完整的12导联心电图集可以提高特定心律失常的分类性能。临床相关性——使用基于心律失常的最佳心电图导联子集,与完整的12导联集相比,基于深度学习的模型可以在不损失准确性的情况下实现分类性能(p<0.05)。