Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
Alliance for Cardiovascular Diagnostic and Treatment Innovation, Whiting School of Engineering and School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA.
Philos Trans A Math Phys Eng Sci. 2021 Dec 13;379(2212):20200258. doi: 10.1098/rsta.2020.0258. Epub 2021 Oct 25.
Deep learning (DL) has achieved promising performance in detecting common abnormalities from the 12-lead electrocardiogram (ECG). However, diagnostic redundancy exists in the 12-lead ECG, which could impose a systematic overfitting on DL, causing poor generalization. We, therefore, hypothesized that finding an optimal lead subset of the 12-lead ECG to eliminate the redundancy would help improve the generalizability of DL-based models. In this study, we developed and evaluated a DL-based model that has a feature extraction stage, an ECG-lead subset selection stage and a decision-making stage to automatically interpret multiple common ECG abnormality types. The data analysed in this study consisted of 6877 12-lead ECG recordings from CPSC 2018 (labelled as normal rhythm or eight types of ECG abnormalities, split into training (approx. 80%), validation (approx. 10%) and test (approx. 10%) sets) and 3998 12-lead ECG recordings from PhysioNet/CinC 2020 (labelled as normal rhythm or four types of ECG abnormalities, used as external text set). The ECG-lead subset selection module was introduced within the proposed model to efficiently constrain model complexity. It detected an optimal 4-lead ECG subset consisting of leads II, aVR, V1 and V4. The proposed model using the optimal 4-lead subset significantly outperformed the model using the complete 12-lead ECG on the validation set and on the external test dataset. The results demonstrated that our proposed model successfully identified an optimal subset of 12-lead ECG; the resulting 4-lead ECG subset improves the generalizability of the DL model in ECG abnormality interpretation. This study provides an outlook on what channels are necessary to keep and which ones may be ignored when considering an automated detection system for cardiac ECG abnormalities. This article is part of the theme issue 'Advanced computation in cardiovascular physiology: new challenges and opportunities'.
深度学习(DL)在检测 12 导联心电图(ECG)中的常见异常方面取得了有希望的性能。然而,12 导联 ECG 中存在诊断冗余,这可能对 DL 造成系统过拟合,导致泛化能力差。因此,我们假设找到一个最优的 12 导联 ECG 导联子集来消除冗余,可以帮助提高基于 DL 的模型的泛化能力。在这项研究中,我们开发并评估了一种基于 DL 的模型,该模型具有特征提取阶段、ECG 导联子集选择阶段和决策阶段,用于自动解释多种常见的 ECG 异常类型。本研究分析的数据由 CPSC 2018 的 6877 份 12 导联 ECG 记录组成(标记为正常节律或八种类型的 ECG 异常,分为训练集(约 80%)、验证集(约 10%)和测试集(约 10%))和 PhysioNet/CinC 2020 的 3998 份 12 导联 ECG 记录组成(标记为正常节律或四种类型的 ECG 异常,用作外部文本集)。在提出的模型中引入了 ECG 导联子集选择模块,以有效地限制模型的复杂性。它检测到一个最佳的 4 导联 ECG 子集,由导联 II、aVR、V1 和 V4 组成。使用最佳 4 导联子集的建议模型在验证集和外部测试数据集上的表现明显优于使用完整 12 导联 ECG 的模型。结果表明,我们提出的模型成功地识别了 12 导联 ECG 的最佳子集;由此产生的 4 导联 ECG 子集提高了 DL 模型在 ECG 异常解释中的泛化能力。本研究展望了在考虑用于心脏 ECG 异常检测的自动化检测系统时,哪些通道是必要的,哪些通道可能是可以忽略的。本文是“心血管生理学中的高级计算:新的挑战和机遇”主题特刊的一部分。