Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-7. doi: 10.1109/EMBC40787.2023.10340437.
The integration of artificial intelligence (AI) into digital pathology has the potential to automate and improve various tasks, such as image analysis and diagnostic decision-making. Yet, the inherent variability of tissues, together with the need for image labeling, lead to biased datasets that limit the generalizability of algorithms trained on them. One of the emerging solutions for this challenge is synthetic histological images. Debiasing real datasets require not only generating photorealistic images but also the ability to control the cellular features within them. A common approach is to use generative methods that perform image translation between semantic masks that reflect prior knowledge of the tissue and a histological image. However, unlike other image domains, the complex structure of the tissue prevents a simple creation of histology semantic masks that are required as input to the image translation model, while semantic masks extracted from real images reduce the process's scalability. In this work, we introduce a scalable generative model, coined as DEPAS (De-novo Pathology Semantic Masks), that captures tissue structure and generates high-resolution semantic masks with state-of-the-art quality. We demonstrate the ability of DEPAS to generate realistic semantic maps of tissue for three types of organs: skin, prostate, and lung. Moreover, we show that these masks can be processed using a generative image translation model to produce photorealistic histology images of two types of cancer with two different types of staining techniques. Finally, we harness DEPAS to generate multi-label semantic masks that capture different cell types distributions and use them to produce histological images with on-demand cellular features. Overall, our work provides a state-of-the-art solution for the challenging task of generating synthetic histological images while controlling their semantic information in a scalable way.
人工智能(AI)与数字病理学的融合具有自动化和改进各种任务的潜力,例如图像分析和诊断决策。然而,组织的固有可变性以及图像标记的需求导致了有偏差的数据集,限制了基于这些数据集训练的算法的通用性。解决这一挑战的新兴方法之一是合成组织学图像。纠正真实数据集的偏差不仅需要生成逼真的图像,还需要能够控制其中的细胞特征。一种常见的方法是使用生成方法,在反映组织先验知识的语义掩模和组织学图像之间进行图像转换。然而,与其他图像领域不同,组织的复杂结构阻止了简单地创建作为图像转换模型输入所需的组织学语义掩模,而从真实图像中提取的语义掩模降低了该过程的可扩展性。在这项工作中,我们引入了一种可扩展的生成模型,称为 DEPAS(De-novo 病理学语义掩模),它可以捕获组织结构并生成具有最新质量的高分辨率语义掩模。我们展示了 DEPAS 生成三种类型器官(皮肤、前列腺和肺)的真实组织语义图的能力。此外,我们表明可以使用生成图像转换模型来处理这些掩模,以生成两种不同染色技术的两种癌症的逼真组织学图像。最后,我们利用 DEPAS 生成多标签语义掩模,以捕获不同细胞类型的分布,并使用它们生成具有按需细胞特征的组织学图像。总的来说,我们的工作为生成具有可控语义信息的合成组织学图像这一具有挑战性的任务提供了最先进的解决方案。