Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340593.
The finite element method (FEM) has become an increasingly popular tool for the computational modeling of multiscale biological systems, including the electrode-tissue interface and the behavior of individual neural cells. However, a significant challenge in these studies is integrating multiple levels of complexity, each with its biophysical properties. This paper presents a single platform solution for modeling these multiscale systems using the finite element method. The proposed method combines different finite element formulations tailored to the specific biophysical properties of each scale into a single unified simulation platform. The results of this method are compared to experimental data to demonstrate the accuracy and efficacy of the proposed approach. With the goal of eliciting the most significant possible response from the retinal ganglion cell's (RGC) multiple components, we devised an electrical stimulation strategy and electrode placement setup that took into account both the RGC's horizontal and vertical location. We found that the activity in a single RGC model could be elicited by a cathodic pulse of amplitude 34 µA. We observed that the optimum electrode placement for a neural response is around the initial axon segment, 30 μm from the soma, and 10 μm above the RGC. Our results show that the proposed method can accurately capture the complex behavior of these multiscale systems and provide a valuable tool for further research in retinal prostheses.Clinical Relevance- To develop efficient electrical stimulation schemes for retinal prosthesis applications, this research can shed light on the behavior of the electrode-tissue interface and individual neural cells. Electrical stimulation of RGCs has shown promise in the application of retinal prostheses. Still, a thorough understanding of the electrode-induced electric field is essential for the design of effective and safe stimulation protocols. Electrical stimulation's side effects may require knowledge of multiple physics disciplines (such as thermal or structural deformation owing to implant placement inside the eye). Finding a solution to diseases that cause vision impairment could be aided by a finite element method (FEM) framework that simulates the neuronal response to extracellular electrical stimulation for realistic 3D cell and electrode geometries.
有限元法(FEM)已成为计算多尺度生物系统模型的越来越流行的工具,包括电极-组织界面和单个神经细胞的行为。然而,这些研究中的一个重大挑战是整合具有不同生物物理特性的多个层次的复杂性。本文提出了一种使用有限元法对这些多尺度系统进行建模的单一平台解决方案。所提出的方法将针对每个尺度的特定生物物理特性量身定制的不同有限元公式组合到单个统一的模拟平台中。该方法的结果与实验数据进行了比较,以证明所提出方法的准确性和有效性。为了从视网膜神经节细胞(RGC)的多个组件中引出最大可能的反应,我们设计了一种电刺激策略和电极放置设置,该策略考虑了 RGC 的水平和垂直位置。我们发现,单个 RGC 模型的活动可以通过幅度为 34 µA 的阴极脉冲来引发。我们观察到,对于神经反应的最佳电极放置位置是在初始轴突段周围,距离胞体 30 µm,距离 RGC 上方 10 µm。我们的结果表明,所提出的方法可以准确地捕捉这些多尺度系统的复杂行为,并为视网膜假体的进一步研究提供了有价值的工具。临床相关性-为了开发用于视网膜假体应用的高效电刺激方案,这项研究可以阐明电极-组织界面和单个神经细胞的行为。RGC 的电刺激在视网膜假体的应用中显示出了前景。但是,对于设计有效的和安全的刺激方案,了解电极诱导的电场是至关重要的。由于植入物放置在眼睛内部,因此可能需要了解多个物理学科(例如,由于植入物放置而引起的热或结构变形)的知识。为了找到可以帮助治疗导致视力障碍的疾病的方法,可以使用有限元法(FEM)框架来模拟神经元对体外电刺激的反应,以实现对现实的 3D 细胞和电极几何形状的模拟。