Suppr超能文献

不同视网膜区域中小双极和伞状视网膜神经节细胞电诱发反应的分析。

Ananalysis of electrically evoked responses of midget and parasol retinal ganglion cells in different retinal regions.

作者信息

Song Xiaoyu, Qiu Shirong, Shivdasani Mohit N, Zhou Feng, Liu Zhengyang, Ma Saidong, Chai Xinyu, Chen Yao, Cai Xuan, Guo Tianruo, Li Liming

机构信息

School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.

出版信息

J Neural Eng. 2022 Mar 30;19(2). doi: 10.1088/1741-2552/ac5b18.

Abstract

. Visual outcomes provided by present retinal prostheses that primarily target retinal ganglion cells (RGCs) through epiretinal stimulation remain rudimentary, partly due to the limited knowledge of retinal responses under electrical stimulation. Better understanding of how different retinal regions can be quantitatively controlled with high spatial accuracy, will be beneficial to the design of micro-electrode arrays and stimulation strategies for next-generation wide-view, high-resolution epiretinal implants.. A computational model was developed to assess neural activity at different eccentricities (2 mm and 5 mm) within the human retina. This model included midget and parasol RGCs with anatomically accurate cell distribution and cell-specific morphological information. We then performedinvestigations of region-specific RGC responses to epiretinal electrical stimulation using varied electrode sizes (5-210m diameter), emulating both commercialized retinal implants and recently developed prototype devices.. Our model of epiretinal stimulation predicted RGC population excitation analogous to the complex percepts reported in human subjects. Following this, our simulations suggest that midget and parasol RGCs have characteristic regional differences in excitation under preferred electrode sizes. Relatively central (2 mm) regions demonstrated higher number of excited RGCs but lower overall activated receptive field (RF) areas under the same stimulus amplitudes (two-way analysis of variance (ANOVA),< 0.05). Furthermore, the activated RGC numbers per unit active RF area (number-RF ratio) were significantly higher in central than in peripheral regions, and higher in the midget than in the parasol population under all tested electrode sizes (two-way ANOVA,< 0.05). Our simulations also suggested that smaller electrodes exhibit a higher range of controllable stimulation parameters to achieve pre-defined performance of RGC excitation. An empirical model:=· exp (·) +of the stimulus amplitude ()-electrode diameter () relationship was constructed to achieve the pre-defined objective function values in different retinal regions, indicating the ability of controlling retinal outputs by fine-tuning the stimulation amplitude with different electrode sizes. Finally, our multielectrode simulations predicted differential neural crosstalk between adjacent electrodes in central temporal and peripheral temporal regions, providing insights towards establishing a non-uniformly distributed multielectrode array geometry for wide-view retinal implants.Stimulus-response properties in central and peripheral retina can provide useful information to estimate electrode parameters for region-specific activation by retinal stimulation. Our findings support the possibility of improving the performance of epiretinal prostheses by exploring the influence of electrode array geometry on activation of different retinal regions.

摘要

目前主要通过视网膜外刺激靶向视网膜神经节细胞(RGC)的视网膜假体所提供的视觉效果仍然很初级,部分原因是对电刺激下视网膜反应的了解有限。更好地理解如何以高空间精度对不同视网膜区域进行定量控制,将有助于下一代宽视野、高分辨率视网膜外植入物的微电极阵列和刺激策略的设计。开发了一种计算模型来评估人视网膜内不同偏心度(2毫米和5毫米)处的神经活动。该模型包括具有解剖学上准确的细胞分布和细胞特异性形态信息的侏儒和伞状RGC。然后,我们使用不同的电极尺寸(直径5 - 210微米)对视网膜外电刺激的区域特异性RGC反应进行了研究,模拟了商业化视网膜植入物和最近开发的原型设备。我们的视网膜外刺激模型预测了RGC群体兴奋,类似于人类受试者报告的复杂感知。在此之后,我们的模拟表明,在优选的电极尺寸下,侏儒和伞状RGC在兴奋方面具有特征性的区域差异。在相同刺激幅度下,相对中央(2毫米)区域显示出更多兴奋的RGC,但总体激活的感受野(RF)面积较小(双向方差分析(ANOVA),<0.05)。此外,在所有测试电极尺寸下,中央区域每单位活动RF面积的激活RGC数量(数量 - RF比)显著高于周边区域,侏儒群体中的该比值高于伞状群体(双向ANOVA,<0.05)。我们的模拟还表明,较小的电极表现出更高范围的可控刺激参数,以实现RGC兴奋的预定义性能。构建了刺激幅度()与电极直径()关系的经验模型:=· exp (·) +,以在不同视网膜区域实现预定义的目标函数值,表明通过用不同电极尺寸微调刺激幅度来控制视网膜输出的能力。最后,我们的多电极模拟预测了中央颞侧和周边颞侧区域相邻电极之间的差异神经串扰,为建立用于宽视野视网膜植入物的非均匀分布多电极阵列几何结构提供了见解。中央和周边视网膜的刺激 - 反应特性可以提供有用信息,以估计通过视网膜刺激进行区域特异性激活的电极参数。我们的研究结果支持通过探索电极阵列几何结构对不同视网膜区域激活的影响来提高视网膜外假体性能的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验