Suppr超能文献

基于电子健康记录的上市后药物致肝损伤的因果评估

Causal Evaluation of Post-Marketing Drugs for Drug-induced Liver Injury from Electronic Health Records.

作者信息

Wang Yu, Ma Jing, Ma Shuang, Wang Jiaqi, Li Jingsong

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2023 Jul;2023:1-4. doi: 10.1109/EMBC40787.2023.10340721.

Abstract

Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions that can lead to acute liver failure and death. Detection of DILI and causal estimation of drug-hepatotoxicity association are of great importance for patient safety. This paper proposes a framework for causal estimation of post-marketing drugs for DILI from real-world electronic health record (EHR) data. Randomized clinical trials were replicated at scale by automatically generating different user and non-user cohorts for each potential drug, and average treatment effects (ATEs) of drugs were estimated using targeted maximum likelihood estimation. Ten years of real-world EHRs were used to validate the framework. Of all 1199 single-ingredient drugs analyzed, 7 novel and 7 known drug-hepatotoxicity associations were found to be causal.

摘要

药物性肝损伤(DILI)是最常见且严重的药物不良反应之一,可导致急性肝衰竭甚至死亡。检测DILI以及对药物与肝毒性关联进行因果评估对于患者安全至关重要。本文提出了一个基于真实世界电子健康记录(EHR)数据对上市后药物导致DILI进行因果评估的框架。通过为每种潜在药物自动生成不同的使用者和非使用者队列,大规模复制随机临床试验,并使用靶向最大似然估计来估计药物的平均治疗效果(ATEs)。利用十年的真实世界EHR数据对该框架进行验证。在分析的所有1199种单一成分药物中,发现7种新的以及7种已知的药物与肝毒性关联具有因果关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验