Suppr超能文献

使用惯性测量单元进行步态障碍评估的质心估算。

Center of Mass Estimation for Impaired Gait Assessment Using Inertial Measurement Units.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:12-22. doi: 10.1109/TNSRE.2023.3341436. Epub 2024 Jan 12.

Abstract

Injury or disease often compromise walking dynamics and negatively impact quality of life and independence. Assessing methods to restore or improve pathological gait can be expedited by examining a global parameter that reflects overall musculoskeletal control. Center of mass (CoM) kinematics follow well-defined trajectories during unimpaired gait, and change predictably with various gait pathologies. We propose a method to estimate CoM trajectories from inertial measurement units (IMUs) using a bidirectional Long Short-Term Memory neural network to evaluate rehabilitation interventions and outcomes. Five non-disabled volunteers participated in a single session of various dynamic walking trials with IMUs mounted on various body segments. A neural network trained with data from four of the five volunteers through a leave-one-subject out cross validation estimated the CoM with average root mean square errors (RMSEs) of 1.44cm, 1.15cm, and 0.40cm in the mediolateral (ML), anteroposterior (AP), and inferior/superior (IS) directions respectively. The impact of number and location of IMUs on network prediction accuracy was determined via principal component analysis. Comparing across all configurations, three to five IMUs located on the legs and medial trunk were the most promising reduced sensor sets for achieving CoM estimates suitable for outcome assessment. Lastly, the networks were tested on data from an individual with hemiparesis with the greatest error increase in the ML direction, which could stem from asymmetric gait. These results provide a framework for assessing gait deviations after disease or injury and evaluating rehabilitation interventions intended to normalize gait pathologies.

摘要

损伤或疾病常影响步行动力学,降低生活质量和独立性。评估恢复或改善病理性步态的方法可以通过检查反映整体骨骼肌肉控制的全局参数来加速。在正常步态中,质心(CoM)运动学遵循明确的轨迹,并且随着各种步态病理的变化而可预测地变化。我们提出了一种使用双向长短时记忆神经网络(LSTM)从惯性测量单元(IMU)估算 CoM 轨迹的方法,以评估康复干预和结果。五名非残疾志愿者参与了各种动态步行试验,在不同的身体部位安装了 IMU。通过离开一个受试者的交叉验证,使用来自五名志愿者中的四名志愿者的数据训练神经网络,分别在横向(ML)、前后(AP)和下/上(IS)方向上对 CoM 进行平均均方根误差(RMSE)的估算,平均为 1.44cm、1.15cm 和 0.40cm。通过主成分分析确定了 IMU 的数量和位置对网络预测精度的影响。比较所有配置,位于腿部和内侧躯干的三个到五个 IMU 是实现适合结果评估的 CoM 估计的最有前途的简化传感器集。最后,将网络应用于偏瘫患者的数据进行测试,在 ML 方向上误差增加最大,这可能源于不对称步态。这些结果为评估疾病或损伤后的步态偏差以及评估旨在使步态病理正常化的康复干预措施提供了框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ca5/10849874/01a2a32c406e/nihms-1958971-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验