Suppr超能文献

可穿戴传感器和机器学习方法在估计站立姿势或运动期间生物力学特征中的应用:系统评价。

The Use of Wearable Sensors and Machine Learning Methods to Estimate Biomechanical Characteristics During Standing Posture or Locomotion: A Systematic Review.

机构信息

Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC 29425, USA.

Department of Healthcare Leadership and Management, Medical University of South Carolina, Charleston, SC 29425, USA.

出版信息

Sensors (Basel). 2024 Nov 14;24(22):7280. doi: 10.3390/s24227280.

Abstract

Balance deficits are present in a variety of clinical populations and can negatively impact quality of life. The integration of wearable sensors and machine learning technology (ML) provides unique opportunities to quantify biomechanical characteristics related to balance outside of a laboratory setting. This article provides a general overview of recent developments in using wearable sensors and ML to estimate or predict biomechanical characteristics such as center of pressure (CoP) and center of mass (CoM) motion. This systematic review was conducted according to PRISMA guidelines. Databases including Scopus, PubMed, CINHAL, Trip PRO, Cochrane, and Otseeker databases were searched for publications on the use of wearable sensors combined with ML to predict biomechanical characteristics. Fourteen publications met the inclusion criteria and were included in this review. From each publication, information on study characteristics, testing conditions, ML models applied, estimated biomechanical characteristics, and sensor positions were extracted. Additionally, the study type, level of evidence, and Downs and Black scale score were reported to evaluate methodological quality and bias. Most studies tested subjects during walking and utilized some type of neural network (NN) ML model to estimate biomechanical characteristics. Many of the studies focused on minimizing the necessary number of sensors and placed them on areas near or below the waist. Nearly all studies reporting RMSE and correlation coefficients had values <15% and >0.85, respectively, indicating strong ML model estimation accuracy. Overall, this review can help guide the future development of ML algorithms and wearable sensor technologies to estimate postural mechanics.

摘要

平衡缺陷存在于各种临床人群中,并可能对生活质量产生负面影响。可穿戴传感器和机器学习技术(ML)的整合为在实验室环境之外量化与平衡相关的生物力学特征提供了独特的机会。本文概述了使用可穿戴传感器和 ML 来估计或预测生物力学特征(如压力中心(CoP)和质心(CoM)运动)的最新进展。本系统评价按照 PRISMA 指南进行。检索了 Scopus、PubMed、CINHAL、Trip PRO、Cochrane 和 Otseeker 数据库中关于使用可穿戴传感器与 ML 相结合来预测生物力学特征的出版物。符合纳入标准的有 14 篇出版物被纳入本综述。从每篇出版物中提取了有关研究特征、测试条件、应用的 ML 模型、估计的生物力学特征和传感器位置的信息。此外,还报告了研究类型、证据水平以及 Downs 和 Black 量表评分,以评估方法学质量和偏倚。大多数研究在行走时测试受试者,并使用某种类型的神经网络(NN)ML 模型来估计生物力学特征。许多研究都致力于最大限度地减少所需传感器的数量,并将其放置在腰部附近或下方。几乎所有报告 RMSE 和相关系数的研究值分别<15%和>0.85,表明 ML 模型估计具有较高的准确性。总体而言,本综述可以帮助指导未来 ML 算法和可穿戴传感器技术的发展,以估计姿势力学。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a056/11598280/9437f96bad7a/sensors-24-07280-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验