Suppr超能文献

基于微流控技术的金属卤化物钙钛矿纳米晶智能制造

Microfluidics-enabled intelligent manufacturing of metal halide perovskite nanocrystals.

作者信息

Tang Xiaobing, Yang Fuqian

机构信息

Materials Program, Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA.

出版信息

Biomicrofluidics. 2023 Dec 12;17(6):061304. doi: 10.1063/5.0172135. eCollection 2023 Dec.

Abstract

Large-scale and controllable fabrication is an indispensable step for the industrialization and commercialization of halide perovskite nanocrystals, which are new-generation semiconductor materials for optoelectronic applications. Microfluidics, which provides continuous and precise synthesis, has been considered as a promising technique to fulfill this aspect. The research studies over the past decades have witnessed the advancement of microfluidics as a powerful tool in the fabrication of halide perovskite nanocrystals. In this Perspective, the state-of-the-art research based on microfluidics is introduced initially, including the synthesis of functional structures and materials, devices, as well as the interdisciplinary interactions between microfluidics and artificial intelligence and machine learning, etc. We then detail the issues and challenges in hindering progress in the above areas. Finally, we provide future directions and trends for the technology to achieve its full potential. This Perspective is expected to benefit the collective efforts between the field of nanomaterials and microfluidics in advanced manufacturing.

摘要

大规模且可控的制造是卤化物钙钛矿纳米晶体实现产业化和商业化不可或缺的一步,卤化物钙钛矿纳米晶体是用于光电子应用的新一代半导体材料。微流控技术能够实现连续且精确的合成,被视为实现这一目标的一项很有前景的技术。过去几十年的研究见证了微流控技术作为制造卤化物钙钛矿纳米晶体的强大工具所取得的进展。在这篇综述中,首先介绍了基于微流控技术的前沿研究,包括功能结构和材料的合成、器件,以及微流控技术与人工智能和机器学习等之间的跨学科相互作用等。然后,我们详细阐述了阻碍上述领域取得进展的问题和挑战。最后,我们给出了该技术充分发挥潜力的未来方向和趋势。这篇综述有望促进纳米材料领域和微流控技术在先进制造方面的共同努力。

相似文献

1
Microfluidics-enabled intelligent manufacturing of metal halide perovskite nanocrystals.
Biomicrofluidics. 2023 Dec 12;17(6):061304. doi: 10.1063/5.0172135. eCollection 2023 Dec.
2
Green-route manufacturing towards future industrialization of metal halide perovskite nanocrystals.
Chem Commun (Camb). 2024 Feb 1;60(11):1389-1403. doi: 10.1039/d3cc05282f.
4
Doping and ion substitution in colloidal metal halide perovskite nanocrystals.
Chem Soc Rev. 2020 Jul 21;49(14):4953-5007. doi: 10.1039/c9cs00790c.
5
Searching for High-Quality Halide Perovskite Single Crystals toward X-ray Detection.
J Phys Chem Lett. 2022 Apr 7;13(13):2851-2861. doi: 10.1021/acs.jpclett.2c00450. Epub 2022 Mar 24.
6
Enhancing the Intrinsic and Extrinsic Stability of Halide Perovskite Nanocrystals for Efficient and Durable Optoelectronics.
ACS Appl Mater Interfaces. 2022 Aug 3;14(30):34291-34302. doi: 10.1021/acsami.2c01822. Epub 2022 Apr 26.
8
Recent Development of Optoelectronic Application Based on Metal Halide Perovskite Nanocrystals.
Front Chem. 2022 Jan 5;9:822106. doi: 10.3389/fchem.2021.822106. eCollection 2021.
9
Recent Advances in Synthesis, Properties, and Applications of Metal Halide Perovskite Nanocrystals/Polymer Nanocomposites.
Adv Mater. 2021 Dec;33(50):e2005888. doi: 10.1002/adma.202005888. Epub 2021 Jun 6.
10
Continuous manufacturing of highly stable lead halide perovskite nanocrystals a dual-reactor strategy.
Nanoscale Adv. 2023 Mar 8;5(7):2038-2044. doi: 10.1039/d2na00744d. eCollection 2023 Mar 28.

本文引用的文献

2
Programmable microfluidics for dynamic multiband camouflage.
Microsyst Nanoeng. 2023 Apr 4;9:43. doi: 10.1038/s41378-023-00494-3. eCollection 2023.
5
Industry outlook of perovskite quantum dots for display applications.
Nat Nanotechnol. 2022 Aug;17(8):813-816. doi: 10.1038/s41565-022-01163-8.
6
Halide Remixing under Device Operation Imparts Stability on Mixed-Cation Mixed-Halide Perovskite Solar Cells.
Adv Mater. 2022 Sep;34(36):e2202163. doi: 10.1002/adma.202202163. Epub 2022 Aug 7.
7
Fibrous Nanoreactors from Microfluidic Blow Spinning for Mass Production of Highly Stable Ligand-Free Perovskite Quantum Dots.
Angew Chem Int Ed Engl. 2022 Jul 4;61(27):e202204371. doi: 10.1002/anie.202204371. Epub 2022 May 3.
8
A Universal Ternary-Solvent-Ink Strategy toward Efficient Inkjet-Printed Perovskite Quantum Dot Light-Emitting Diodes.
Adv Mater. 2022 Mar;34(10):e2107798. doi: 10.1002/adma.202107798. Epub 2022 Jan 31.
10
Water-assisted preparation of ethanol-dispersed CsPbBr perovskite nanocrystals and emissive gel.
J Colloid Interface Sci. 2021 Sep 15;598:166-171. doi: 10.1016/j.jcis.2021.04.017. Epub 2021 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验