Otero-Martínez Clara, Fiuza-Maneiro Nadesh, Polavarapu Lakshminarayana
Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, CINBIO, Universidade de Vigo, Marcosende 36310, Vigo, Spain.
ACS Appl Mater Interfaces. 2022 Aug 3;14(30):34291-34302. doi: 10.1021/acsami.2c01822. Epub 2022 Apr 26.
Over the past few years, metal halide perovskite nanocrystals have been at the forefront of colloidal semiconductor nanomaterial research because of their fascinating properties and potential applications. However, their intrinsic phase instability and chemical degradation under external exposures (high temperature, water, oxygen, and light) are currently limiting the real-world applications of perovskite optoelectronics. To overcome these stability issues, researchers have reported various strategies such as doping and encapsulation. The doping improves the optical and photoactive phase stability, whereas the encapsulation protects the perovskite NCs from external exposures. This perspective discusses the rationale of various strategies to enhance the stability of perovskite NCs and suggests possible future directions for the fabrication of optoelectronic devices with long-term stability while maintaining high efficiency.
在过去几年中,金属卤化物钙钛矿纳米晶体因其迷人的特性和潜在应用一直处于胶体半导体纳米材料研究的前沿。然而,它们固有的相不稳定性以及在外部暴露(高温、水、氧气和光)下的化学降解目前限制了钙钛矿光电器件的实际应用。为了克服这些稳定性问题,研究人员报告了各种策略,如掺杂和封装。掺杂提高了光学和光活性相的稳定性,而封装则保护钙钛矿纳米晶体免受外部暴露。本文讨论了增强钙钛矿纳米晶体稳定性的各种策略的原理,并提出了在保持高效率的同时制造具有长期稳定性的光电器件的可能未来方向。