Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States.
J Phys Chem B. 2023 Dec 28;127(51):10987-10999. doi: 10.1021/acs.jpcb.3c06311. Epub 2023 Dec 14.
Unspecific peroxygenases (UPOs) are emerging as promising biocatalysts for selective oxyfunctionalization of unactivated C-H bonds. However, their potential in large-scale synthesis is currently constrained by suboptimal chemical selectivity. Improving the selectivity of UPOs requires a deep understanding of the molecular basis of their catalysis. Recent molecular simulations have sought to unravel UPO's selectivity and inform their design principles. However, most of these studies focused on substrate-binding poses. Few researchers have investigated how the reactivity of CpdI, the principal oxidizing intermediate in the catalytic cycle, influences selectivity in a realistic protein environment. Moreover, the influence of protein electrostatics on the reaction kinetics of CpdI has also been largely overlooked. To bridge this gap, we used multiscale simulations to interpret the regio- and enantioselective hydroxylation of the -heptane substrate catalyzed by UPO (UPO). We comprehensively characterized the energetics and kinetics of the hydrogen atom-transfer (HAT) step, initiated by CpdI, and the subsequent oxygen rebound step forming the product. Notably, our approach involved both free energy and potential energy evaluations in a quantum mechanics/molecular mechanics (QM/MM) setting, mitigating the dependence of results on the choice of initial conditions. These calculations illuminate the thermodynamics and kinetics of the HAT and oxygen rebound steps. Our findings highlight that both the conformational selection and the distinct chemical reactivity of different substrate hydrogen atoms together dictate the regio- and enantio-selectivity. Building on our previous study of CpdI's formation in UPO, our results indicate that the HAT step is the rate-limiting step in the overall catalytic cycle. The subsequent oxygen rebound step is swift and retains the selectivity determined by the HAT step. We also pinpointed several polar and charged amino acid residues whose electrostatic potentials considerably influence the reaction barrier of the HAT step. Notably, the Glu196 residue is pivotal for both the CpdI's formation and participation in the HAT step. Our research offers in-depth insights into the catalytic cycle of UPO, which will be instrumental in the rational design of UPOs with enhanced properties.
非特异性过氧化物酶 (UPO) 作为一种有前途的生物催化剂,可用于选择性地氧化未活化的 C-H 键。然而,它们在大规模合成中的潜力目前受到化学选择性不理想的限制。提高 UPO 的选择性需要深入了解其催化的分子基础。最近的分子模拟试图揭示 UPO 的选择性,并为其设计原则提供信息。然而,大多数这些研究都集中在底物结合构象上。很少有研究人员研究过催化循环中主要氧化中间体 CpdI 的反应性如何在真实的蛋白质环境中影响选择性。此外,蛋白质静电对 CpdI 反应动力学的影响也在很大程度上被忽视了。为了弥补这一差距,我们使用多尺度模拟来解释 UPO(UPO)催化的 -庚烷底物的区域和对映选择性羟化。我们全面描述了由 CpdI 引发的氢原子转移 (HAT) 步骤和随后形成产物的氧回弹步骤的能量学和动力学。值得注意的是,我们的方法涉及在量子力学/分子力学 (QM/MM) 环境中进行自由能和势能评估,减轻了结果对初始条件选择的依赖。这些计算阐明了 HAT 和氧回弹步骤的热力学和动力学。我们的发现强调了不同底物氢原子的构象选择和独特的化学反应性共同决定了区域和对映选择性。基于我们之前对 UPO 中 CpdI 形成的研究,我们的结果表明 HAT 步骤是整个催化循环的速率限制步骤。随后的氧回弹步骤很快,并且保留了由 HAT 步骤确定的选择性。我们还确定了几个极性和带电氨基酸残基,它们的静电势对 HAT 步骤的反应势垒有很大影响。值得注意的是,Glu196 残基对 CpdI 的形成和参与 HAT 步骤都至关重要。我们的研究深入了解了 UPO 的催化循环,这将有助于合理设计具有增强性能的 UPO。