González-Benjumea Alejandro, Martínez-Sugrañes Mireia, Alcalde Miguel, Romero Elvira, Guallar Víctor, Floor Martin, Martínez Angel T, Gutiérrez Ana
Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Reina Mercedes 10, E-41012, Sevilla, Spain.
Life Sciences Department, Barcelona Supercomputing Center (BSC), Eusebi Güell 1-3, E-08034, Barcelona, Spain.
ChemSusChem. 2025 Jul 27;18(15):e202500749. doi: 10.1002/cssc.202500749. Epub 2025 Jun 23.
Hydroxylated derivatives of arachidonic acid play crucial roles in physiology and inflammation response, with distinct biological effects for (R)- and (S)-enantiomers, highlighting their pharmaceutical relevance. Here, recombinant unspecific peroxygenases (UPOs) are harnessed-from the fungi Coprinopsis cinerea (rCciUPO) and Agrocybe aegerita (rAaeUPO), and the rAaeUPO engineered variants A77L, A77T, and A77N-to regio- and enantio-selectively hydroxylate arachidonic acid. rCciUPO and rAaeUPO primarily produced ω-1 and ω-2 hydroxy derivatives, with certain overoxidation to keto forms, while the rAaeUPO variants show enhanced regioselectivity to ω-1 hydroxylation and minor overoxidation. Remarkably, A77L exhibited very good enantioselectivity, yielding 92% of the (S)-enantiomer of 19-hydroxyarachidonic acid. Molecular dynamics simulations revealed that the narrowing of the active-site channel by the A77L mutation imposes critical torsional constraints on the substrate, favoring selective hydroxylation and preventing overoxidation of hydroxylated products. In this way, key interactions involving residues T242, E245, and D70 modulate enantioselectivity by interacting with the substrate's carboxylate moiety. Additional experimental assays show that these UPOs efficiently hydroxylate other bioactive C18-C22 fatty acids. The experimental and computational data integration findings provide a rational basis for engineering UPO selectivity, presenting the enzyme variant A77L as a promising biocatalyst for the selective synthesis of pharmacologically relevant hydroxy-fatty acids.
花生四烯酸的羟基化衍生物在生理和炎症反应中发挥着关键作用,(R)-和(S)-对映体具有不同的生物学效应,凸显了它们在药学上的相关性。在此,利用来自真菌灰盖鬼伞(rCciUPO)和皱环球盖菇(rAaeUPO)的重组非特异性过氧酶,以及rAaeUPO工程变体A77L、A77T和A77N,对花生四烯酸进行区域和对映体选择性羟基化。rCciUPO和rAaeUPO主要产生ω-1和ω-2羟基衍生物,并伴有一定程度的过氧化生成酮形式,而rAaeUPO变体对ω-1羟基化表现出增强的区域选择性和较少的过氧化。值得注意的是,A77L表现出非常好的对映体选择性,生成了92%的19-羟基花生四烯酸(S)-对映体。分子动力学模拟表明,A77L突变导致活性位点通道变窄,对底物施加了关键的扭转限制,有利于选择性羟基化并防止羟基化产物的过氧化。通过这种方式,涉及残基T242、E245和D70的关键相互作用通过与底物的羧基部分相互作用来调节对映体选择性。额外的实验分析表明,这些过氧酶能有效地羟基化其他生物活性C18 - C22脂肪酸。实验和计算数据整合结果为工程化过氧酶选择性提供了合理依据,将酶变体A77L展现为一种有前景的生物催化剂,用于选择性合成药理学相关的羟基脂肪酸。