Suppr超能文献

利用基于随机森林的时间序列数据预测法对美国大西洋中部地区径流预测的地理空间模式

Geospatial patterns in runoff projections using random forest based forecasting of time-series data for the mid-Atlantic region of the United States.

作者信息

Gaertner Brandi

机构信息

The Pennsylvania State University, 2217 Earth and Engineering Sciences Building, University Park, PA 16802, United States.

出版信息

Sci Total Environ. 2024 Feb 20;912:169211. doi: 10.1016/j.scitotenv.2023.169211. Epub 2023 Dec 12.

Abstract

This research explores the geospatial patterns of historical runoff for the period 1958-2021 in the Mid-Atlantic region and uses these time-series data plus nine external climatic and hydrologic variables to predict future runoff for the period 2022-2031. Gridded, average monthly climatic water balance data were obtained from the TerraClimate dataset. A cluster analysis of the long term (1958-2021) historical runoff found 13 significant temporal trends, which tend to form large contiguous regions associated with climate gradients and topographic patterns. The runoff time-series clusters, and the associated time-series of 9 TerraClimate variables, were used to generate random forest based forecast models to predict future (2022-2031) runoff. The random forest-based forecast with the greatest accuracy included inputs of actual evapotranspiration, climate water deficit, minimum, average, and maximum temperature, and vapor pressure deficit. The final model predicted significantly increasing runoff in nine of the 13 clusters.

摘要

本研究探讨了1958 - 2021年期间大西洋中部地区历史径流的地理空间模式,并使用这些时间序列数据以及九个外部气候和水文变量来预测2022 - 2031年期间的未来径流。网格化的月平均气候水平衡数据取自TerraClimate数据集。对长期(1958 - 2021年)历史径流进行的聚类分析发现了13个显著的时间趋势,这些趋势往往形成与气候梯度和地形模式相关的大片连续区域。径流时间序列聚类以及9个TerraClimate变量的相关时间序列被用于生成基于随机森林的预测模型,以预测未来(2022 - 2031年)径流。准确性最高的基于随机森林的预测包括实际蒸散、气候水分亏缺、最低、平均和最高温度以及水汽压亏缺等输入变量。最终模型预测1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验