Suppr超能文献

基于卷积神经网络的 CT 图像全自动二尖瓣提取方法及存在概率图

CNN-based fully automatic mitral valve extraction using CT images and existence probability maps.

机构信息

Canon Inc., 30-2, Shimomaruko 3-chome, Ohta-ku, Tokyo 146-8501, Japan.

Canon Medical Systems Corporation., 1385, Shimoishigami, Otawara-shi, Tochigi 324-8550, Japan.

出版信息

Phys Med Biol. 2024 Jan 15;69(3). doi: 10.1088/1361-6560/ad162b.

Abstract

. Accurate extraction of mitral valve shape from clinical tomographic images acquired in patients has proven useful for planning surgical and interventional mitral valve treatments. However, manual extraction of the mitral valve shape is laborious, and the existing automatic extraction methods have not been sufficiently accurate. In this paper, we propose a fully automated method of extracting mitral valve shape from computed tomography (CT) images for the all phases of the cardiac cycle.. This method extracts the mitral valve shape based on DenseNet using both the original CT image and the existence probability maps of the mitral valve area inferred by U-Net as input. A total of 1585 CT images from 204 patients with various cardiac diseases including mitral regurgitation were collected and manually annotated for mitral valve region. The proposed method was trained and evaluated by 10-fold cross validation using the collected data and was compared with the method without the existence probability maps.. The mean error of shape extraction error in the proposed method is 0.88 mm, which is an improvement of 0.32 mm compared with the method without the existence probability maps.. We present a novel fully automatic mitral valve extraction method from input to output for all phases of 4D CT images. We suggest that the accuracy of mitral valve shape extraction is improved by using existence probability maps.

摘要

从患者获取的临床层析图像中准确提取二尖瓣形状已被证明对规划手术和介入二尖瓣治疗非常有用。然而,手动提取二尖瓣形状很费力,现有的自动提取方法不够精确。本文提出了一种从 CT(计算机断层扫描)图像中自动提取二尖瓣形状的方法,适用于心脏周期的所有阶段。该方法基于 DenseNet 使用原始 CT 图像和 U-Net 推断的二尖瓣区域存在概率图作为输入提取二尖瓣形状。共收集了 204 名患有各种心脏病(包括二尖瓣反流)患者的 1585 张 CT 图像,并对二尖瓣区域进行了手动标注。使用收集的数据通过 10 倍交叉验证对所提出的方法进行了训练和评估,并与没有存在概率图的方法进行了比较。该方法的形状提取误差的平均误差为 0.88 毫米,与没有存在概率图的方法相比,提高了 0.32 毫米。我们提出了一种从输入到输出的新颖的 4D CT 图像全相位二尖瓣自动提取方法。我们建议通过使用存在概率图可以提高二尖瓣形状提取的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验