Suppr超能文献

经胸超声心动图胸骨旁长轴切面中二尖瓣的自动分割用于解剖评估和风险分层。

Automated mitral valve segmentation in PLAX-view transthoracic echocardiography for anatomical assessment and risk stratification.

作者信息

Jansen Gino E, Molenaar Mitchel A, Schuuring Mark J, Bouma Berto J, Išgum Ivana

机构信息

Department of Biomedical Engineering & Physics, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands; Informatics Institute, University of Amsterdam, Science Park 900, Amsterdam, 1098 XH, The Netherlands; Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.

Department of Cardiology, Amsterdam University Medical Center, Meibergdreef 9, Amsterdam, 1105 AZ, The Netherlands.

出版信息

Comput Biol Med. 2025 Sep;196(Pt C):110900. doi: 10.1016/j.compbiomed.2025.110900. Epub 2025 Aug 20.

Abstract

Accurate segmentation of the mitral valve in transthoracic echocardiography (TTE) enables the extraction of various anatomical parameters that are important for guiding clinical management. However, manual mitral valve segmentation is time-consuming and prone to interobserver variability. To support robust automatic analysis of mitral valve anatomy, we propose a novel AI-based method for mitral valve segmentation and anatomical measurement extraction. We retrospectively collected a set of echocardiographic exams from 1756 consecutive patients with suspected coronary artery disease. For these patients, we retrieved expert-defined scores for mitral regurgitation (MR) severity and follow-up characteristics. PLAX-view videos were automatically identified, and the inside border of the mitral valve leaflets were manually segmented in 182 patients. To automatically segment mitral valve leaflets, we designed a deep neural network that takes a video frame and outputs a distance- and classification-map for each leaflet, supervised by manual segmentations. From the resulting automatic segmentations, we extracted leaflet length, annulus diameter, tenting area, and coaptation length. To demonstrate the clinical relevance of these automatically extracted measurements, we performed univariable and multivariable Cox Regression survival analysis, with the clinical endpoint defined as heart-failure hospitalization or all-cause mortality. We trained the segmentation model on annotated frames of 111 patients, and tested segmentation performance on a set of 71 patients. For the survival analysis, we included 1,117 patients (mean age 64.1 ± 12.4 years, 58% male, median follow-up 3.3 years). The trained model achieved an average surface distance of 0.89 mm, a Hausdorff distance of 3.34 mm, and a temporal consistency score of 97%. Additionally, leaflet coaptation was accurately detected in 93% of annotated frames. In univariable Cox regression, automated annulus diameter (>35 mm, hazard ratio (HR) = 2.38, p<0.001), tenting area (>2.4 cm, HR = 2.48, p<0.001), tenting height (>10 mm, HR = 1.91, p<0.001), and coaptation length (>3 mm, HR = 1.53, p = 0.007) were significantly associated with the defined clinical endpoint. For reference, significant MR by expert assessment resulted in an HR of 2.31 (p<0.001). In multivariable Cox Regression analysis, automated annulus diameter and coaptation length predicted the defined endpoint as independent parameters (p = 0.03 and p = 0.05, respectively). Our method allows accurate segmentation of the mitral valve in TTE, and enables fully automated quantification of key measurements describing mitral valve anatomy. This has the potential to improve risk stratification for cardiac patients.

摘要

经胸超声心动图(TTE)中二尖瓣的准确分割能够提取各种解剖参数,这些参数对于指导临床管理非常重要。然而,手动二尖瓣分割既耗时又容易出现观察者间的差异。为了支持对二尖瓣解剖结构进行强大的自动分析,我们提出了一种基于人工智能的新型二尖瓣分割和解剖测量提取方法。我们回顾性收集了1756例连续疑似冠心病患者的一组超声心动图检查。对于这些患者,我们获取了专家定义的二尖瓣反流(MR)严重程度评分和随访特征。自动识别PLAX视图视频,并在182例患者中手动分割二尖瓣叶的内边界。为了自动分割二尖瓣叶,我们设计了一个深度神经网络,该网络接收视频帧并为每个叶输出距离图和分类图,并由手动分割进行监督。从得到的自动分割结果中,我们提取了叶长度、瓣环直径、帐篷面积和贴合长度。为了证明这些自动提取测量值的临床相关性,我们进行了单变量和多变量Cox回归生存分析,临床终点定义为心力衰竭住院或全因死亡。我们在111例患者的标注帧上训练分割模型,并在71例患者的数据集上测试分割性能。对于生存分析,我们纳入了1117例患者(平均年龄64.1±12.4岁,58%为男性,中位随访时间3.3年)。训练后的模型平均表面距离为0.89毫米,豪斯多夫距离为3.34毫米,时间一致性评分为97%。此外,在93%的标注帧中准确检测到叶贴合。在单变量Cox回归中,自动测量的瓣环直径(>35毫米,危险比(HR)=2.38,p<0.001)、帐篷面积(>2.4平方厘米,HR = 2.48,p<0.001)、帐篷高度(>10毫米,HR = 1.91,p<0.001)和贴合长度(>3毫米,HR = 1.53,p = 0.007)与定义的临床终点显著相关。作为参考,专家评估的显著MR导致HR为2.31(p<0.001)。在多变量Cox回归分析中,自动测量的瓣环直径和贴合长度作为独立参数预测了定义的终点(分别为p = 0.03和p = 0.05)。我们的方法能够在TTE中准确分割二尖瓣,并能够对描述二尖瓣解剖结构的关键测量值进行完全自动化量化。这有可能改善心脏病患者的风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验