Suppr超能文献

快速胶凝、高性能 MXene 水凝胶用于可穿戴传感器。

Fast gelling, high performance MXene hydrogels for wearable sensors.

机构信息

Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.

Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China.

出版信息

J Colloid Interface Sci. 2024 Mar 15;658:137-147. doi: 10.1016/j.jcis.2023.12.039. Epub 2023 Dec 12.

Abstract

Hydrogel-based functional materials had attracted great attention in the fields of artificial intelligence, soft robotics, and motion monitoring. However, the gelation of hydrogels induced by free radical polymerization typically required heating, light exposure, and other conditions, limiting their practical applications and development in real-life scenarios. In this study, a simple and direct method was proposed to achieve rapid gelation at room temperature by incorporating reductive MXene sheets in conjunction with metal ions into the chitosan network and inducing the formation of a polyacrylamide network in an extremely short time (10 s). This resulted in a dual-network MXene-crosslinked conductive hydrogel composite that exhibited exceptional stretchability (1350 %), remarkably low dissipated energy (0.40 kJ m at 100 % strain), high sensitivity (GF = 2.86 at 300-500 % strain), and strong adhesion to various substrate surfaces. The study demonstrated potential applications in the reliable detection of various motions, including repetitive fine movements and large-scale human body motions. This work provided a feasible platform for developing integrated wearable health-monitoring electronic systems.

摘要

水凝胶基功能材料在人工智能、软机器人和运动监测等领域引起了极大的关注。然而,自由基聚合诱导的水凝胶凝胶化通常需要加热、光照等条件,限制了其在实际场景中的实际应用和发展。在这项研究中,提出了一种简单直接的方法,通过将还原型 MXene 片与金属离子一起掺入壳聚糖网络中,并在极短的时间内(10 秒)诱导形成聚丙烯酰胺网络,从而在室温下实现快速凝胶化。这导致了双网络 MXene 交联导电水凝胶复合材料具有出色的拉伸性(1350%)、极低的能量耗散(在 100%应变时为 0.40 kJ m)、高灵敏度(在 300-500%应变时 GF 为 2.86)和对各种基底表面的强附着力。该研究表明其在可靠检测各种运动方面具有潜在应用,包括重复性精细运动和大规模人体运动。这项工作为开发集成式可穿戴健康监测电子系统提供了一个可行的平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验