Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; College of the Environment & Ecology, Xiamen University, Xiamen 361102, PR China.
Water Res. 2024 Feb 1;249:120931. doi: 10.1016/j.watres.2023.120931. Epub 2023 Nov 30.
Fenton reaction has been widespread application in water purification due to the excellent oxidation performances. However, the poor cycle efficiency of Fe(III)/Fe(II) is one of the biggest bottlenecks. In this study, graphite (GP) was used as a green carbon catalyst to accelerate Fenton-like (HO/Fe and persulfate/Fe) reactions by promoting ferric ion reduction and intensifying diverse peroxide activation pathways. Significantly, the carboxyl group on GP anchors iron ions to form GP-COOFe(III) which promote persulfate adsorption to form surface complexes and induce an electron transfer pathway (ETP). While the electron-rich hydroxyl and carbonyl groups will combine to from GP-COFe(II), a reductive intermediate to activate peroxide to generate free radicals (from HO and PDS) or high-value iron [Fe(IV)] (from PMS). Consequently, different pathways lead to distinct degree of oxidation: i) radicals in HO/Fe/GP prefer to mineralize bisphenol A (BPA) with no selectivity; ii) Fe(IV) in PMS/Fe/GP partially oxidizes BPA but cannot open the aromatic ring; iii) ETP in PMS/ or PDS/Fe/GP drives coupling reactions to form polymeric products covered on catalyst surface. Thus, rational engineering surface functionality of graphite and selecting proper peroxides can realize on-demand selectivity and oxidation capacity in Fenton-like systems.
芬顿反应由于其优异的氧化性能而在水净化中得到了广泛的应用。然而,Fe(III)/Fe(II) 的循环效率低是最大的瓶颈之一。在这项研究中,石墨 (GP) 被用作绿色碳催化剂,通过促进铁离子还原和强化各种过氧化物激活途径来加速类芬顿(HO/Fe 和过硫酸盐/Fe)反应。值得注意的是,GP 上的羧基基团将铁离子锚定形成 GP-COOFe(III),从而促进过硫酸盐的吸附形成表面络合物,并诱导电子转移途径 (ETP)。而富电子的羟基和羰基基团将结合形成 GP-COFe(II),这是一种还原中间体,可激活过氧化物生成自由基(来自 HO 和 PDS)或高价值的铁 [Fe(IV)](来自 PMS)。因此,不同的途径导致不同程度的氧化:i)HO/Fe/GP 中的自由基优先无选择性地矿化双酚 A (BPA);ii)PMS/Fe/GP 中的 Fe(IV) 部分氧化 BPA 但不能打开芳环;iii)PMS/或 PDS/Fe/GP 中的 ETP 驱动偶联反应,在催化剂表面形成聚合产物。因此,合理设计石墨的表面功能并选择合适的过氧化物可以在类芬顿体系中实现按需选择性和氧化能力。