Tang Qianqian, Wu Bangxiang, Huang Xiaowen, Ren Wei, Liu Lingling, Tian Lei, Chen Ying, Zhang Long-Shuai, Sun Qing, Kang Zhibing, Ma Tianyi, Zou Jian-Ping
Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang Hangkong University, Nanchang, 330063, P. R. China.
Nat Commun. 2024 Nov 5;15(1):9549. doi: 10.1038/s41467-024-53941-8.
The electron transfer process (ETP) is able to avoid the redox cycling of catalysts by capturing electrons from contaminants directly. However, the ETP usually leads to the formation of oligomers and the reduction of oxidants to anions. Herein, the charge-confined Fe single-atom catalyst (Fe/SCN) with Fe-NS configuration was designed to achieve ETP-mediated contaminant activation of the oxidant by limiting the number of electrons gained by the oxidant to generate O. The Fe/SCN-activate periodate (PI) system shows excellent contaminant degradation performance due to the combination of ETP and O. Experiments and DFT calculations show that the Fe/SCN-PI* complex with strong oxidizing ability triggers the ETP, while the charge-confined effect allows the single-electronic activation of PI to generate O. In the Fe/SCN + PI system, the 100% selectivity dechlorination of ETP and the ring-opening of O avoid the generation of oligomers and realize the transformation of large-molecule contaminants into small-molecule biodegradable products. Furthermore, the Fe/SCN + PI system shows excellent anti-interference ability and application potential. This work pioneers the generation of active species using ETP's electron to activate oxidants, which provides a perspective on the design of single-atom catalysts via the charge-confined effect.
电子转移过程(ETP)能够通过直接从污染物中捕获电子来避免催化剂的氧化还原循环。然而,ETP通常会导致低聚物的形成以及氧化剂还原为阴离子。在此,设计了具有Fe-NS构型的电荷受限铁单原子催化剂(Fe/SCN),通过限制氧化剂获得的电子数量来实现ETP介导的氧化剂对污染物的活化以生成O。Fe/SCN活化高碘酸盐(PI)体系由于ETP和O的结合而表现出优异的污染物降解性能。实验和密度泛函理论计算表明,具有强氧化能力的Fe/SCN-PI*络合物触发ETP,而电荷受限效应允许PI进行单电子活化以生成O。在Fe/SCN + PI体系中,ETP的100%选择性脱氯和O的开环避免了低聚物的生成,并实现了大分子污染物向小分子可生物降解产物的转化。此外,Fe/SCN + PI体系表现出优异的抗干扰能力和应用潜力。这项工作开创了利用ETP的电子来活化氧化剂以产生活性物种的先河,为通过电荷受限效应设计单原子催化剂提供了一个视角。