Suppr超能文献

多尺度蛋白质网络系统地鉴定了七种癌症类型中的异常蛋白质相互作用和致癌调节剂。

Multiscale protein networks systematically identify aberrant protein interactions and oncogenic regulators in seven cancer types.

机构信息

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, 1425 Madison Avenue, New York, NY, 10029, USA.

Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.

出版信息

J Hematol Oncol. 2023 Dec 15;16(1):120. doi: 10.1186/s13045-023-01517-2.

Abstract

Global proteomic data generated by advanced mass spectrometry (MS) technologies can help bridge the gap between genome/transcriptome and functions and hold great potential in elucidating unbiased functional models of pro-tumorigenic pathways. To this end, we collected the high-throughput, whole-genome MS data and conducted integrative proteomic network analyses of 687 cases across 7 cancer types including breast carcinoma (115 tumor samples; 10,438 genes), clear cell renal carcinoma (100 tumor samples; 9,910 genes), colorectal cancer (91 tumor samples; 7,362 genes), hepatocellular carcinoma (101 tumor samples; 6,478 genes), lung adenocarcinoma (104 tumor samples; 10,967 genes), stomach adenocarcinoma (80 tumor samples; 9,268 genes), and uterine corpus endometrial carcinoma UCEC (96 tumor samples; 10,768 genes). Through the protein co-expression network analysis, we identified co-expressed protein modules enriched for differentially expressed proteins in tumor as disease-associated pathways. Comparison with the respective transcriptome network models revealed proteome-specific cancer subnetworks associated with heme metabolism, DNA repair, spliceosome, oxidative phosphorylation and several oncogenic signaling pathways. Cross-cancer comparison identified highly preserved protein modules showing robust pan-cancer interactions and identified endoplasmic reticulum-associated degradation (ERAD) and N-acetyltransferase activity as the central functional axes. We further utilized these network models to predict pan-cancer protein regulators of disease-associated pathways. The top predicted pan-cancer regulators including RSL1D1, DDX21 and SMC2, were experimentally validated in lung, colon, breast cancer and fetal kidney cells. In summary, this study has developed interpretable network models of cancer proteomes, showcasing their potential in unveiling novel oncogenic regulators, elucidating underlying mechanisms, and identifying new therapeutic targets.

摘要

通过先进的质谱 (MS) 技术生成的全球蛋白质组学数据有助于弥合基因组/转录组与功能之间的差距,并在阐明促肿瘤发生途径的无偏功能模型方面具有巨大潜力。为此,我们收集了高通量、全基因组 MS 数据,并对包括乳腺癌(115 个肿瘤样本;10438 个基因)、透明细胞肾细胞癌(100 个肿瘤样本;9910 个基因)、结直肠癌(91 个肿瘤样本;7362 个基因)、肝细胞癌(101 个肿瘤样本;6478 个基因)、肺腺癌(104 个肿瘤样本;10967 个基因)、胃腺癌(80 个肿瘤样本;9268 个基因)和子宫体子宫内膜癌 UCEC(96 个肿瘤样本;10768 个基因)在内的 7 种癌症类型的 687 例病例进行了综合蛋白质组网络分析。通过蛋白质共表达网络分析,我们鉴定了与肿瘤中差异表达蛋白富集的共表达蛋白模块作为疾病相关途径。与相应的转录组网络模型比较揭示了与血红素代谢、DNA 修复、剪接体、氧化磷酸化和几种致癌信号通路相关的蛋白质组特有的癌症子网络。跨癌症比较确定了高度保存的蛋白质模块,这些模块表现出强大的泛癌相互作用,并确定内质网相关降解 (ERAD) 和 N-乙酰转移酶活性为中心功能轴。我们进一步利用这些网络模型来预测与疾病相关途径相关的泛癌蛋白调节剂。包括 RSL1D1、DDX21 和 SMC2 在内的顶级预测泛癌调节剂在肺、结肠、乳腺癌和胎儿肾细胞中得到了实验验证。总之,本研究开发了可解释的癌症蛋白质组网络模型,展示了它们在揭示新型致癌调节剂、阐明潜在机制和识别新治疗靶点方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af03/10724946/2cc815c72a0e/13045_2023_1517_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验