Suppr超能文献

用于多维磁共振指纹成像的自校准子空间重建,用于同时进行弛豫和扩散量化。

Self-calibrated subspace reconstruction for multidimensional MR fingerprinting for simultaneous relaxation and diffusion quantification.

作者信息

Qiu Zhilang, Hu Siyuan, Zhao Walter, Sakaie Ken, Sun Jessie E P, Griswold Mark A, Jones Derek K, Ma Dan

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.

Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA.

出版信息

Magn Reson Med. 2024 May;91(5):1978-1993. doi: 10.1002/mrm.29969. Epub 2023 Dec 15.

Abstract

PURPOSE

To propose a new reconstruction method for multidimensional MR fingerprinting (mdMRF) to address shading artifacts caused by physiological motion-induced measurement errors without navigating or gating.

METHODS

The proposed method comprises two procedures: self-calibration and subspace reconstruction. The first procedure (self-calibration) applies temporally local matrix completion to reconstruct low-resolution images from a subset of under-sampled data extracted from the k-space center. The second procedure (subspace reconstruction) utilizes temporally global subspace reconstruction with pre-estimated temporal subspace from low-resolution images to reconstruct aliasing-free, high-resolution, and time-resolved images. After reconstruction, a customized outlier detection algorithm was employed to automatically detect and remove images corrupted by measurement errors. Feasibility, robustness, and scan efficiency were evaluated through in vivo human brain imaging experiments.

RESULTS

The proposed method successfully reconstructed aliasing-free, high-resolution, and time-resolved images, where the measurement errors were accurately represented. The corrupted images were automatically and robustly detected and removed. Artifact-free T1, T2, and ADC maps were generated simultaneously. The proposed reconstruction method demonstrated robustness across different scanners, parameter settings, and subjects. A high scan efficiency of less than 20 s per slice has been achieved.

CONCLUSION

The proposed reconstruction method can effectively alleviate shading artifacts caused by physiological motion-induced measurement errors. It enables simultaneous and artifact-free quantification of T1, T2, and ADC using mdMRF scans without prospective gating, with robustness and high scan efficiency.

摘要

目的

提出一种用于多维磁共振指纹成像(mdMRF)的新重建方法,以解决由生理运动引起的测量误差导致的阴影伪影,而无需导航或门控。

方法

所提出的方法包括两个步骤:自校准和子空间重建。第一步(自校准)应用时间局部矩阵补全,从从k空间中心提取的欠采样数据子集中重建低分辨率图像。第二步(子空间重建)利用从低分辨率图像中预先估计的时间子空间进行时间全局子空间重建,以重建无混叠、高分辨率和时间分辨的图像。重建后,采用定制的离群值检测算法自动检测并去除因测量误差而损坏的图像。通过体内人脑成像实验评估了可行性、鲁棒性和扫描效率。

结果

所提出的方法成功重建了无混叠、高分辨率和时间分辨的图像,其中准确表示了测量误差。自动且稳健地检测并去除了损坏的图像。同时生成了无伪影的T1、T2和ADC图。所提出的重建方法在不同的扫描仪、参数设置和受试者之间表现出鲁棒性。实现了每切片少于20秒的高扫描效率。

结论

所提出的重建方法可以有效减轻由生理运动引起的测量误差导致的阴影伪影。它能够在无前瞻性门控的情况下,使用mdMRF扫描同时对T1、T2和ADC进行无伪影定量,具有鲁棒性和高扫描效率。

相似文献

2
MR Fingerprinting with b-Tensor Encoding for Simultaneous Quantification of Relaxation and Diffusion in a Single Scan.
Magn Reson Med. 2022 Nov;88(5):2043-2057. doi: 10.1002/mrm.29352. Epub 2022 Jun 17.
4
Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling.
Magn Reson Med. 2018 Feb;79(2):933-942. doi: 10.1002/mrm.26701. Epub 2017 Apr 15.
5
Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data.
Magn Reson Imaging. 2017 Sep;41:41-52. doi: 10.1016/j.mri.2017.02.007. Epub 2017 Mar 3.
6
Time-resolved MR fingerprinting for T* signal extraction: MR fingerprinting meets echo planar time-resolved imaging.
Magn Reson Med. 2025 Apr;93(4):1751-1760. doi: 10.1002/mrm.30381. Epub 2024 Nov 20.
7
Sparsity and locally low rank regularization for MR fingerprinting.
Magn Reson Med. 2019 Jun;81(6):3530-3543. doi: 10.1002/mrm.27665. Epub 2019 Feb 5.
9
High-Quality MR Fingerprinting Reconstruction Using Structured Low-Rank Matrix Completion and Subspace Projection.
IEEE Trans Med Imaging. 2022 May;41(5):1150-1164. doi: 10.1109/TMI.2021.3133329. Epub 2022 May 2.

引用本文的文献

2
SuperMRF: deep robust reconstruction for highly accelerated magnetic resonance fingerprinting.
Quant Imaging Med Surg. 2025 Apr 1;15(4):3480-3500. doi: 10.21037/qims-23-1819. Epub 2025 Mar 28.
3
Efficient pulse sequence design framework for high-dimensional MR fingerprinting scans using systematic error index.
Magn Reson Med. 2024 Oct;92(4):1600-1616. doi: 10.1002/mrm.30155. Epub 2024 May 9.

本文引用的文献

2
MR Fingerprinting with b-Tensor Encoding for Simultaneous Quantification of Relaxation and Diffusion in a Single Scan.
Magn Reson Med. 2022 Nov;88(5):2043-2057. doi: 10.1002/mrm.29352. Epub 2022 Jun 17.
4
Structured Low-Rank Algorithms: Theory, Magnetic Resonance Applications, and Links to Machine Learning.
IEEE Signal Process Mag. 2020 Jan;37(1):54-68. doi: 10.1109/msp.2019.2950432. Epub 2020 Jan 17.
5
High-Quality MR Fingerprinting Reconstruction Using Structured Low-Rank Matrix Completion and Subspace Projection.
IEEE Trans Med Imaging. 2022 May;41(5):1150-1164. doi: 10.1109/TMI.2021.3133329. Epub 2022 May 2.
6
Highly accelerated parallel MRI using wave encoding and virtual conjugate coils.
Magn Reson Med. 2021 Sep;86(3):1345-1359. doi: 10.1002/mrm.28803. Epub 2021 Apr 15.
7
Motion-compensated gradient waveforms for tensor-valued diffusion encoding by constrained numerical optimization.
Magn Reson Med. 2021 Apr;85(4):2117-2126. doi: 10.1002/mrm.28551. Epub 2020 Oct 13.
8
Three-dimensional simultaneous brain T , T , and ADC mapping with MR Multitasking.
Magn Reson Med. 2020 Jul;84(1):72-88. doi: 10.1002/mrm.28092. Epub 2019 Nov 25.
9
High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI.
Magn Reson Med. 2019 Jun;81(6):3705-3719. doi: 10.1002/mrm.27694. Epub 2019 Mar 4.
10
Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction.
NMR Biomed. 2019 Feb;32(2):e4041. doi: 10.1002/nbm.4041. Epub 2018 Dec 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验