Suppr超能文献

基于稀疏性和局部低秩的磁共振指纹成像正则化方法

Sparsity and locally low rank regularization for MR fingerprinting.

机构信息

King's College London, School of Biomedical Engineering and Imaging Sciences, London, United Kingdom.

Philips Healthcare, Guilford, United Kingdom.

出版信息

Magn Reson Med. 2019 Jun;81(6):3530-3543. doi: 10.1002/mrm.27665. Epub 2019 Feb 5.

Abstract

PURPOSE

Develop a sparse and locally low rank (LLR) regularized reconstruction to accelerate MR fingerprinting (MRF).

METHODS

Recent works have introduced low rank reconstructions to MRF, based on temporal compression operators learned from the MRF dictionary. In other MR applications, LLR regularization has been introduced to exploit temporal redundancy in local regions of the image. Here, we propose to include spatial sparsity and LLR regularization terms in the MRF reconstruction. This approach, so called SLLR-MRF, further reduces aliasing in the time-point images and enables higher acceleration factors. The proposed approach was evaluated in simulations, T /T phantom acquisition, and in vivo brain acquisitions in 5 healthy subjects with different undersampling factors. Acceleration was also used in vivo to enable acquisitions with higher in-plane spatial resolution in comparable scan time.

RESULTS

Simulations, phantom, and in vivo results show that low rank MRF reconstructions with high acceleration factors (<875 time-point images, 1 radial spoke per time-point) have residual aliasing artifacts that propagate into the parametric maps. The artifacts are reduced with the proposed SLLR-MRF resulting in considerable improvements in precision, without changes in accuracy. In vivo results show improved parametric maps for the proposed SLLR-MRF, potentially enabling MRF acquisitions with 1 radial spoke per time-point in approximately 2.6 s (~600 time-point images) for 2 × 2 mm and 9.6 s (1750 time-point images) for 1 × 1 mm in-plane resolution.

CONCLUSION

The proposed SLLR-MRF reconstruction further improves parametric map quality compared with low rank MRF, enabling shorter scan times and/or increased spatial resolution.

摘要

目的

开发一种稀疏且局部低秩(LLR)正则化重建方法,以加速磁共振指纹成像(MRF)。

方法

最近的工作已经将低秩重建引入到 MRF 中,其基于从 MRF 字典中学到的时间压缩算子。在其他磁共振应用中,已经引入 LLR 正则化来利用图像局部区域的时间冗余。在这里,我们提出在 MRF 重建中加入空间稀疏和 LLR 正则化项。这种方法称为 SLLR-MRF,进一步减少了时间点图像中的混叠,并能够实现更高的加速因子。该方法在模拟、T/T 体模采集以及 5 名不同欠采样因子的健康受试者的体内脑采集进行了评估。加速还用于在可比扫描时间内实现更高的平面空间分辨率的采集。

结果

模拟、体模和体内结果表明,具有高加速因子(<875 个时间点图像,每个时间点一个径向线)的低秩 MRF 重建仍然存在残留的混叠伪影,这些伪影会传播到参数图中。通过提出的 SLLR-MRF 减少了这些伪影,从而在不改变准确性的情况下显著提高了精度。体内结果表明,对于所提出的 SLLR-MRF,参数图得到了改善,这可能使 MRF 采集能够以 1 个径向线/时间点(2x2mm 平面分辨率约 2.6s(~600 个时间点图像),1x1mm 平面分辨率约 9.6s(1750 个时间点图像))的速度进行采集。

结论

与低秩 MRF 相比,所提出的 SLLR-MRF 重建进一步提高了参数图的质量,从而能够缩短扫描时间和/或提高空间分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/addb/6492150/1af9b4bd7550/MRM-81-3530-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验