Reid Obadiah G, Johnson Justin C, Eaves Joel D, Damrauer Niels H, Anthony John E
National Renewable Energy Laboratory, Chemistry and Nanoscience Center, Golden, Colorado 80401, United States.
Renewable and Sustainable Energy Institute, Boulder, Colorado 80309, United States.
Acc Chem Res. 2024 Jan 2;57(1):59-69. doi: 10.1021/acs.accounts.3c00556. Epub 2023 Dec 16.
ConspectusPreparing and manipulating pure magnetic states in molecular systems are the key initial requirements for harnessing the power of synthetic chemistry to drive practical quantum sensing and computing technologies. One route for achieving the requisite higher spin states in organic systems exploits the phenomenon of singlet fission, which produces pairs of triplet excited states from initially photoexcited singlets in molecular assemblies with multiple chromophores. The resulting spin states are characterized by total spin (quintet, triplet, or singlet) and its projection onto a specified molecular or magnetic field axis. These excited states are typically highly polarized but exhibit an impure spin population pattern. Herein, we report the prediction and experimental verification of molecular design rules that drive the population of a single pure magnetic state and describe the progress toward its experimental realization.A vital feature of this work is the close partnership among theory, chemical synthesis, and spectroscopy. We begin by presenting our theoretical framework for understanding spin manifold interconversion in singlet fission systems. This theory makes specific testable predictions about the intermolecular structure and orientation relative to an external magnetic field that should lead to pure magnetic state preparation and provides a powerful tool for interpreting magnetic spectra. We then test these predictions through detailed magnetic spectroscopy experiments on a series of new molecular architectures that meet one or more of the identified structural criteria. Many of these architectures rely on the synthesis of molecules with features unique to this effort: rigid bridges between chromophores in dimers, heteroacenes with tailored singlet/triplet-pair energy level matching, or side-group engineering to produce specific crystal structures. The spin evolution of these systems is revealed through our application and development of several magnetic resonance methods, each of which has different sensitivities and relevance in environments relevant to quantum applications.Our theoretical predictions prove to be remarkably consistent with our experimental results, though experimentally meeting all the structural prescriptions demanded by theory for true pure-state preparation remains a challenge. Our magnetic spectra agree with our model of triplet-pair behavior, including funneling of the population to the = 0 magnetic sublevel of the quintet under specified conditions in dimers and crystals, showing that this phenomenon is subject to control through molecular design. Moreover, our demonstration of novel and/or highly sensitive detection mechanisms of spin states in singlet fission systems, including photoluminescence (PL), photoinduced absorption (PA), and magnetoconductance (MC), points the way toward both a deeper understanding of how these systems evolve and technologically feasible routes toward experiments at the single-molecule quantum limit that are desirable for computational applications.
综述
在分子系统中制备和操控纯磁态是利用合成化学的力量推动实用量子传感和计算技术的关键初始要求。在有机系统中实现所需的高自旋态的一种途径是利用单重态裂变现象,该现象在具有多个发色团的分子聚集体中从最初光激发的单重态产生三重态激发态对。产生的自旋态由总自旋(五重态、三重态或单重态)及其在指定分子或磁场轴上的投影来表征。这些激发态通常具有高度极化,但呈现出不纯的自旋布居模式。在此,我们报告了驱动单一纯磁态布居的分子设计规则的预测和实验验证,并描述了其实验实现的进展。
这项工作的一个重要特征是理论、化学合成和光谱学之间的紧密合作。我们首先介绍用于理解单重态裂变系统中自旋流形相互转换的理论框架。该理论对分子间结构以及相对于外部磁场的取向做出了具体的可测试预测,这些预测应能导致纯磁态的制备,并为解释磁光谱提供了一个强大的工具。然后,我们通过对一系列满足一个或多个已确定结构标准的新分子结构进行详细的磁光谱实验来检验这些预测。这些结构中的许多依赖于具有这项工作独特特征的分子合成:二聚体中发色团之间的刚性桥、具有定制的单重态/三重态对能级匹配的杂并苯,或用于产生特定晶体结构的侧基工程。通过我们对几种磁共振方法的应用和开发揭示了这些系统的自旋演化,每种方法在与量子应用相关的环境中具有不同的灵敏度和相关性。
我们的理论预测与实验结果非常一致,尽管在实验上满足理论要求的所有用于真正纯态制备的结构规定仍然是一个挑战。我们的磁光谱与我们的三重态对行为模型一致,包括在二聚体和晶体的特定条件下,布居向五重态的(M = 0)磁子能级的汇聚,表明这种现象可以通过分子设计来控制。此外,我们对单重态裂变系统中自旋态的新型和/或高灵敏度检测机制的演示,包括光致发光(PL)、光致吸收(PA)和磁电导(MC),为更深入理解这些系统如何演化以及朝着计算应用所需的单分子量子极限实验的技术可行路线指明了方向。