Integrated Glyco-BioMedical Research Center (iGMED), Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan; Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan; Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
Division of Structural Biology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
J Biol Chem. 2024 Jan;300(1):105564. doi: 10.1016/j.jbc.2023.105564. Epub 2023 Dec 14.
The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried β-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried β-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.
多聚唾液酸转移酶 ST8SIA2 和 ST8SIA4 及其产物多唾液酸(polySia)已知与癌症和精神障碍有关。ST8SIA2 和 ST8SIA4 具有保守的氨基酸(AA)序列基序,对于在神经细胞粘附分子上合成多唾液酸结构是必不可少的。为了在多聚唾液酸转移酶中寻找新的基序,我们采用了可以预测与疾病相关的 AA 取代的计算机个体元随机森林程序。个体元随机森林程序预测了一个新的八氨基酸序列基序,该基序由高度致病性的 AA 残基组成,因此被命名为致病性(P)基序。在致病性基序(P 基序)中进行的一系列丙氨酸点突变实验表明,大多数 P 基序突变体失去了多唾液酸化活性,而不会改变酶的适当表达水平或在高尔基体中的定位。此外,我们使用新建立的突变能计算方法评估了 P 基序突变体的酶稳定性,表明构象能的微小变化调节了活性。在 AlphaFold2 模型中,我们发现 P 基序是 ST8SIA2 和 ST8SIA4 特有的已知表面基序下方的埋藏 β-折叠。总之,P 基序是一种新的埋藏 β-折叠,从分子内部调节多聚唾液酸转移酶的全活性。