Suppr超能文献

无相位局部祖先推断减轻了切换错误对基于相位的方法的影响。

Phase-free local ancestry inference mitigates the impact of switch errors on phase-based methods.

作者信息

Avadhanam Siddharth, Williams Amy L

出版信息

bioRxiv. 2023 Dec 4:2023.12.02.569669. doi: 10.1101/2023.12.02.569669.

Abstract

Local ancestry inference (LAI) is an indispensable component of a variety of analyses in medical and population genetics, from admixture mapping to characterizing demographic history. However, the accuracy of LAI depends on a number of factors such as phase quality (for phase-based LAI methods), time since admixture of the population under study, and other factors. Here we present an empirical analysis of four LAI methods using simulated individuals of mixed African and European ancestry, examining the impact of variable phase quality and a range of demographic scenarios. We found that regardless of phasing options, calls from LAI methods that operate on unphased genotypes (phase-free LAI) have 2.6-4.6% higher Pearson correlation with the ground truth than methods that operate on phased genotypes (phase-based LAI). Applying the TRACTOR phase-correction algorithm led to modest improvements in phase-based LAI, but despite this, the Pearson correlation of phase-free LAI remained 2.4-3.8% higher than phase-corrected phase-based approaches (considering the best performing methods in each category). Phase-free and phase-based LAI accuracy differences can dramatically impact downstream analyses: estimates of the time since admixture using phase-based LAI tracts are upwardly biased by ≈10 generations using our highest quality phased data but have virtually no bias using phase-free LAI calls. Our study underscores the strong dependence of phase-based LAI accuracy on phase quality and highlights the merits of LAI approaches that analyze unphased genetic data.

摘要

本地祖先推断(LAI)是医学和群体遗传学中各种分析不可或缺的组成部分,从混合映射到描述人口历史。然而,LAI的准确性取决于许多因素,如相位质量(对于基于相位的LAI方法)、所研究群体混合后的时间以及其他因素。在这里,我们使用非洲和欧洲混合血统的模拟个体对四种LAI方法进行了实证分析,研究了可变相位质量和一系列人口统计情景的影响。我们发现,无论相位选项如何,对未分型基因型进行操作的LAI方法(无相位LAI)的调用与真实情况的皮尔逊相关性比基于分型基因型的方法(基于相位的LAI)高2.6-4.6%。应用TRACTOR相位校正算法使基于相位的LAI有适度改进,但尽管如此,无相位LAI的皮尔逊相关性仍比经相位校正的基于相位的方法高2.4-3.8%(考虑每类中表现最佳的方法)。无相位和基于相位的LAI准确性差异会对下游分析产生巨大影响:使用我们最高质量的分型数据,基于相位的LAI片段估计的混合后时间向上偏差约10代,但使用无相位LAI调用几乎没有偏差。我们的研究强调了基于相位的LAI准确性对相位质量的强烈依赖性,并突出了分析未分型遗传数据的LAI方法的优点。

相似文献

1
Phase-free local ancestry inference mitigates the impact of switch errors on phase-based methods.
bioRxiv. 2023 Dec 4:2023.12.02.569669. doi: 10.1101/2023.12.02.569669.
2
3
Characterizing features affecting local ancestry inference performance in admixed populations.
Am J Hum Genet. 2025 Feb 6;112(2):224-234. doi: 10.1016/j.ajhg.2024.12.005. Epub 2025 Jan 2.
8
Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis.
Cochrane Database Syst Rev. 2017 Jun 22;6(6):CD007419. doi: 10.1002/14651858.CD007419.pub5.
9
Drugs for preventing postoperative nausea and vomiting in adults after general anaesthesia: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Oct 19;10(10):CD012859. doi: 10.1002/14651858.CD012859.pub2.
10
Interventions to reduce harm from continued tobacco use.
Cochrane Database Syst Rev. 2016 Oct 13;10(10):CD005231. doi: 10.1002/14651858.CD005231.pub3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验