Webb Jordan A, Farrow Edward, Cain Brittany, Yuan Zhenyu, Yarawsky Alexander E, Schoch Emma, Gagliani Ellen K, Herr Andrew B, Gebelein Brian, Kovall Rhett A
Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
Graduate Program in Molecular and Developmental Biology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
bioRxiv. 2023 Dec 8:2023.12.08.570805. doi: 10.1101/2023.12.08.570805.
The conserved Gsx homeodomain (HD) transcription factors specify neural cell fates in animals from flies to mammals. Like many HD proteins, Gsx factors bind A/T-rich DNA sequences prompting the question - how do HD factors that bind similar DNA sequences regulate specific target genes ? Prior studies revealed that Gsx factors bind DNA both as a monomer on individual A/T-rich sites and as a cooperative homodimer to two sites spaced precisely seven base pairs apart. However, the mechanistic basis for Gsx DNA binding and cooperativity are poorly understood. Here, we used biochemical, biophysical, structural, and modeling approaches to (1) show that Gsx factors are monomers in solution and require DNA for cooperative complex formation; (2) define the affinity and thermodynamic binding parameters of Gsx2/DNA interactions; (3) solve a high-resolution monomer/DNA structure that reveals Gsx2 induces a 20° bend in DNA; (4) identify a Gsx2 protein-protein interface required for cooperative DNA binding; and (5) determine that flexible spacer DNA sequences enhance Gsx2 cooperativity on dimer sites. Altogether, our results provide a mechanistic basis for understanding the protein and DNA structural determinants that underlie cooperative DNA binding by Gsx factors, thereby providing a deeper understanding of HD specificity.
保守的Gsx同源结构域(HD)转录因子决定了从果蝇到哺乳动物等动物体内神经细胞的命运。与许多HD蛋白一样,Gsx因子结合富含A/T的DNA序列,这就引发了一个问题——结合相似DNA序列的HD因子如何调控特定的靶基因?先前的研究表明,Gsx因子既可以作为单体结合在单个富含A/T的位点上的DNA,也可以作为协同同源二聚体结合到精确间隔七个碱基对的两个位点上的DNA。然而,对于Gsx与DNA结合及协同作用的机制基础,人们了解甚少。在这里,我们使用生化、生物物理、结构和建模方法来:(1)证明Gsx因子在溶液中是单体,并且需要DNA来形成协同复合物;(2)定义Gsx2与DNA相互作用的亲和力和热力学结合参数;(3)解析出高分辨率的单体/DNA结构,该结构显示Gsx2会使DNA产生20°的弯曲;(4)确定协同DNA结合所需的Gsx2蛋白质-蛋白质界面;(5)确定灵活的间隔DNA序列会增强Gsx2在二聚体位点上的协同作用。总之,我们的结果为理解Gsx因子协同DNA结合背后的蛋白质和DNA结构决定因素提供了机制基础,从而更深入地理解HD的特异性。