Suppr超能文献

使用具有不确定性量化的深度学习自动计算心肌灌注储备。

Automatic calculation of myocardial perfusion reserve using deep learning with uncertainty quantification.

作者信息

Kim Yoon-Chul, Kim Kyurae, Choe Yeon Hyeon

机构信息

Division of Digital Healthcare, College of Software and Digital Healthcare Convergence, Yonsei University, Wonju, Republic of Korea.

Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Quant Imaging Med Surg. 2023 Dec 1;13(12):7936-7949. doi: 10.21037/qims-23-840. Epub 2023 Oct 10.

Abstract

BACKGROUND

Myocardial perfusion reserve index (MPRI) in magnetic resonance imaging (MRI) is an important indicator of ischemia, and its measurement typically involves manual procedures. The purposes of this study were to develop a fully automatic method for estimating the MPRI and to evaluate its performance.

METHODS

The method consisted of segmenting the myocardium in dynamic contrast-enhanced (DCE) myocardial perfusion MRI data using Monte Carlo dropout U-Net, dividing the myocardium into segments based on landmark localization with machine learning, and estimating the MPRI after the calculation of the left ventricular and myocardial contrast upslopes. The proposed method was compared with a reference method, which involved manual adjustments of the myocardial contours and upslope ranges.

RESULTS

In test subjects, MPRIs measured by the proposed technique correlated with those by the manual reference in segmental assessment [intraclass correlation coefficient (ICC) =0.75, 95% CI: 0.70-0.79, P<0.001]. The automatic and reference MPRI values showed a mean difference of -0.02 and 95% limits of agreement of (-0.86, 0.82).

CONCLUSIONS

The proposed automatic method is based on deep learning segmentation and machine learning landmark detection for MPRI measurements in DCE perfusion MRI. It holds the potential to efficiently and quantitatively assess myocardial ischemia without any user's interaction.

摘要

背景

磁共振成像(MRI)中的心肌灌注储备指数(MPRI)是缺血的重要指标,其测量通常涉及手动操作。本研究的目的是开发一种全自动方法来估计MPRI并评估其性能。

方法

该方法包括使用蒙特卡罗随机失活U-Net在动态对比增强(DCE)心肌灌注MRI数据中分割心肌,基于机器学习的地标定位将心肌划分为节段,并在计算左心室和心肌对比剂上升斜率后估计MPRI。将所提出的方法与一种参考方法进行比较,该参考方法涉及手动调整心肌轮廓和上升斜率范围。

结果

在测试对象中,所提出技术测量的MPRI在节段评估中与手动参考测量的结果相关[组内相关系数(ICC)=0.75,95%CI:0.70-0.79,P<0.001]。自动测量和参考测量的MPRI值平均差异为-0.02,一致性界限为95%(-0.86,0.82)。

结论

所提出的自动方法基于深度学习分割和机器学习地标检测,用于DCE灌注MRI中的MPRI测量。它有潜力在无需任何用户交互的情况下高效、定量地评估心肌缺血。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88fd/10722070/40a32872aa58/qims-13-12-7936-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验