International College of Arts and Sciences, Fukuoka Women's University, 1-1-1 Kasumigaoka, Higashi-Ku, Fukuoka, 813-8529, Japan.
Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-Ku, Osaka, 558-8585, Japan.
BMC Biol. 2023 Dec 18;21(1):291. doi: 10.1186/s12915-023-01789-7.
Rhabdomeric photoreceptors of eyes in the terrestrial slug Limax are the typical invertebrate-type but unique in that three visual opsins (Gq-coupled rhodopsin, xenopsin, Opn5A) and one retinochrome, all belonging to different groups, are co-expressed. However, molecular properties including spectral sensitivity and G protein selectivity of any of them are not determined, which prevents us from understanding an advantage of multiplicity of opsin properties in a single rhabdomeric photoreceptor. To gain insight into the functional role of the co-expression of multiple opsin species in a photoreceptor, we investigated the molecular properties of the visual opsins in the present study.
First, we found that the fourth member of visual opsins, Opn5B, is also co-expressed in the rhabdomere of the photoreceptor together with previously identified three opsins. The photoreceptors were also demonstrated to express Gq and Go alpha subunits. We then determined the spectral sensitivity of the four visual opsins using biochemical and spectroscopic methods. Gq-coupled rhodopsin and xenopsin exhibit maximum sensitivity at ~ 456 and 475 nm, respectively, and Opn5A and Opn5B exhibit maximum sensitivity at ~ 500 and 470 nm, respectively, with significant UV sensitivity. Notably, in vitro experiments revealed that Go alpha was activated by all four visual opsins, in contrast to the specific activation of Gq alpha by Gq-coupled rhodopsin, suggesting that the eye photoreceptor of Limax uses complex G protein signaling pathways.
The eye photoreceptor in Limax expresses as many as four different visual opsin species belonging to three distinct classes. The combination of opsins with different spectral sensitivities and G protein selectivities may underlie physiological properties of the ocular photoreception, such as a shift in spectral sensitivity between dark- and light-adapted states. This may be allowed by adjustment of the relative contribution of the four opsins without neural networks, enabling a simple strategy for fine-tuning of vision.
陆地蜗牛 Limax 的眼睛中的纤毛状光感受器是典型的无脊椎动物类型,但独特之处在于,三种视觉视蛋白(Gq 偶联视蛋白、 Xenopsin、Opn5A)和一种视黄醛,都属于不同的组,被共同表达。然而,包括任何一种光谱敏感性和 G 蛋白选择性在内的分子特性都没有确定,这使得我们无法理解单一纤毛状光感受器中多种视蛋白特性的优势。为了深入了解多种视蛋白在光感受器中的共同表达的功能作用,我们在本研究中研究了视觉视蛋白的分子特性。
首先,我们发现视觉视蛋白的第四个成员 Opn5B 也与之前鉴定的三种视蛋白一起在光感受器的纤毛中共同表达。还证明了光感受器表达 Gq 和 Go alpha 亚基。然后,我们使用生化和光谱学方法确定了四种视觉视蛋白的光谱灵敏度。Gq 偶联视蛋白和 Xenopsin 的最大灵敏度分别在456nm 和 475nm,而 Opn5A 和 Opn5B 的最大灵敏度分别在500nm 和 470nm,具有显著的紫外灵敏度。值得注意的是,体外实验表明,所有四种视觉视蛋白均可激活 Go alpha,而 Gq 偶联视蛋白仅特异性激活 Gq alpha,表明 Limax 的眼光感受器使用复杂的 G 蛋白信号通路。
Limax 的眼光感受器表达多达四种不同的视觉视蛋白,属于三个不同的类别。具有不同光谱敏感性和 G 蛋白选择性的视蛋白的组合可能是眼部光感受器生理特性的基础,例如在暗适应和明适应状态之间的光谱灵敏度转移。这可能通过调整四种视蛋白的相对贡献而无需神经网络来实现,从而为视觉的微调提供了一种简单的策略。