Suppr超能文献

红色视觉的进化与蓝凤蝶中视蛋白的协调调整有关。

The evolution of red color vision is linked to coordinated rhodopsin tuning in lycaenid butterflies.

机构信息

Broad Institute of MIT and Harvard University, Cambridge, MA 02142;

Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138.

出版信息

Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2008986118.

Abstract

Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate G protein-coupled opsins function in a novel or convergent way compared to vertebrate G opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple G opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.

摘要

颜色视觉在脊椎动物和无脊椎动物中都经历了多次进化,主要由不同视蛋白亚类的光谱敏感性数量和变化决定。然而,由于体外表达长波长(LW)无脊椎动物视蛋白的困难,我们对视蛋白光谱敏感性功能转变的分子基础的理解主要偏向于脊椎动物的研究。这限制了我们解决无脊椎动物 G 蛋白偶联视蛋白与脊椎动物 G 视蛋白相比是否以新颖或趋同的方式发挥作用的能力。在这里,我们开发了一种稳健的异源表达系统来纯化无脊椎动物视蛋白,鉴定负责适应性光谱调谐的特定氨基酸变化,并确定无脊椎动物视蛋白中的分子变异如何为增强视觉感知的波长敏感性转变提供基础。通过结合功能和光生理方法,我们从个体小眼的不同感光细胞中表达的红移 LW 和蓝短波长视蛋白中分离出侧向过滤色素的相对贡献。我们使用原位杂交技术可视化了具有四视蛋白视觉系统的蛱蝶复眼的六个小眼类。我们实验表明,蓝视蛋白旁系同源物中导致绿光谱移位的某些关键调谐残基在短波长视蛋白谱系中已经多次进化。总之,我们的结果表明,多个 G 视蛋白基因座的调节和适应性进化之间存在相互作用,以及 LW 和蓝视蛋白的协调光谱移位如何共同作用,以增强昆虫在蓝、红波长的光谱敏感性,从而适应视觉表现。

相似文献

9
A butterfly eye's view of birds.从蝴蝶视角看鸟类。
Bioessays. 2008 Nov;30(11-12):1151-62. doi: 10.1002/bies.20828.

引用本文的文献

2
Molecular diversity of protostome non-visual opsin arthropsin.原口动物非视觉视蛋白节肢视蛋白的分子多样性。
iScience. 2025 Jun 24;28(7):112989. doi: 10.1016/j.isci.2025.112989. eCollection 2025 Jul 18.

本文引用的文献

1
Ecology and evolution of cycad-feeding Lepidoptera.苏铁类植物食性鳞翅目昆虫的生态学和进化。
Ecol Lett. 2020 Dec;23(12):1862-1877. doi: 10.1111/ele.13581. Epub 2020 Sep 24.
2
Evolution of Insect Color Vision: From Spectral Sensitivity to Visual Ecology.昆虫色觉的演化:从光谱敏感性到视觉生态学。
Annu Rev Entomol. 2021 Jan 7;66:435-461. doi: 10.1146/annurev-ento-061720-071644. Epub 2020 Sep 23.
4
The exceptional diversity of visual adaptations in deep-sea teleost fishes.深海硬骨鱼类视觉适应性的非凡多样性。
Semin Cell Dev Biol. 2020 Oct;106:20-30. doi: 10.1016/j.semcdb.2020.05.027. Epub 2020 Jun 11.
5
Exceptional diversity of opsin expression patterns in (Stomatopoda) retinas.(十足目)复眼中视蛋白表达模式的非凡多样性。
Proc Natl Acad Sci U S A. 2020 Apr 21;117(16):8948-8957. doi: 10.1073/pnas.1917303117. Epub 2020 Apr 2.
10
Resolving noise-control conflict by gene duplication.通过基因复制解决噪声控制冲突。
PLoS Biol. 2019 Nov 22;17(11):e3000289. doi: 10.1371/journal.pbio.3000289. eCollection 2019 Nov.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验