Broad Institute of MIT and Harvard University, Cambridge, MA 02142;
Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138.
Proc Natl Acad Sci U S A. 2021 Feb 9;118(6). doi: 10.1073/pnas.2008986118.
Color vision has evolved multiple times in both vertebrates and invertebrates and is largely determined by the number and variation in spectral sensitivities of distinct opsin subclasses. However, because of the difficulty of expressing long-wavelength (LW) invertebrate opsins in vitro, our understanding of the molecular basis of functional shifts in opsin spectral sensitivities has been biased toward research primarily in vertebrates. This has restricted our ability to address whether invertebrate G protein-coupled opsins function in a novel or convergent way compared to vertebrate G opsins. Here we develop a robust heterologous expression system to purify invertebrate rhodopsins, identify specific amino acid changes responsible for adaptive spectral tuning, and pinpoint how molecular variation in invertebrate opsins underlie wavelength sensitivity shifts that enhance visual perception. By combining functional and optophysiological approaches, we disentangle the relative contributions of lateral filtering pigments from red-shifted LW and blue short-wavelength opsins expressed in distinct photoreceptor cells of individual ommatidia. We use in situ hybridization to visualize six ommatidial classes in the compound eye of a lycaenid butterfly with a four-opsin visual system. We show experimentally that certain key tuning residues underlying green spectral shifts in blue opsin paralogs have evolved repeatedly among short-wavelength opsin lineages. Taken together, our results demonstrate the interplay between regulatory and adaptive evolution at multiple G opsin loci, as well as how coordinated spectral shifts in LW and blue opsins can act together to enhance insect spectral sensitivity at blue and red wavelengths for visual performance adaptation.
颜色视觉在脊椎动物和无脊椎动物中都经历了多次进化,主要由不同视蛋白亚类的光谱敏感性数量和变化决定。然而,由于体外表达长波长(LW)无脊椎动物视蛋白的困难,我们对视蛋白光谱敏感性功能转变的分子基础的理解主要偏向于脊椎动物的研究。这限制了我们解决无脊椎动物 G 蛋白偶联视蛋白与脊椎动物 G 视蛋白相比是否以新颖或趋同的方式发挥作用的能力。在这里,我们开发了一种稳健的异源表达系统来纯化无脊椎动物视蛋白,鉴定负责适应性光谱调谐的特定氨基酸变化,并确定无脊椎动物视蛋白中的分子变异如何为增强视觉感知的波长敏感性转变提供基础。通过结合功能和光生理方法,我们从个体小眼的不同感光细胞中表达的红移 LW 和蓝短波长视蛋白中分离出侧向过滤色素的相对贡献。我们使用原位杂交技术可视化了具有四视蛋白视觉系统的蛱蝶复眼的六个小眼类。我们实验表明,蓝视蛋白旁系同源物中导致绿光谱移位的某些关键调谐残基在短波长视蛋白谱系中已经多次进化。总之,我们的结果表明,多个 G 视蛋白基因座的调节和适应性进化之间存在相互作用,以及 LW 和蓝视蛋白的协调光谱移位如何共同作用,以增强昆虫在蓝、红波长的光谱敏感性,从而适应视觉表现。