The Skandion Clinic, Uppsala, Sweden.
Oncology Pathology Department, Karolinska Institutet, Solna, Sweden.
Med Phys. 2024 Jul;51(7):5099-5108. doi: 10.1002/mp.16897. Epub 2023 Dec 19.
Superficial targets require the use of the lowest energies within the available energy range in proton pencil-beam scanning (PBS) technique. However, the lower efficiency of the energy selection system at these energies and the requirement of a greater number of layers may represent disadvantages for this approach. The alternative is to use a range shifter (RS) at nozzle exit. However, one of the concerns of using this beamline element is that it becomes an additional source of neutrons that could irradiate organs situated far from the target.
The purpose of this study is to assess the increase in neutron dose due to the RS in proton PBS technique. Additionally, an analytical model for the neutron production is tested.
Two clinical plans, designed to achieve identical target coverage, were created for an anthropomorphic phantom. These plans consisted of a lateral field delivering an absorbed dose of 60 Gy (RBE) to the target. One of the plans employed the RS. The MCNP code was used to simulate the plans, evaluating the distribution of neutron dose equivalent (H) and the equivalent dose in organ. In the plan with the RS plan, neutron production from both the patient and the RS were assessed separately. H values were also fitted versus the distance to field edge using a Gaussian function.
H per prescription dose, in the plan using the RS, ranged between 1.4 and 3.7 mSv/Gy at the field edge, whereas doses at 40 cm from the edge ranged from 9.9 to 32 μSv/Gy. These values are 1.2 to 10 times higher compared to those obtained without the RS. Both this factor and the contribution of neutrons originating from the RS increases with the distance from field edge. A triple-Gaussian function was able to reproduce the equivalent dose in organs within a factor of 2, although underestimating the values.
The dose deposited in the patient by the neutrons originating from the RS predominantly affects areas away from the target (beyond approximately 25 cm from field edge), resulting in a neutron dose equivalent of the order of mSv. This indicates an overall low neutron contribution from the use of RS in PBS.
在质子铅笔束扫描(PBS)技术中,浅层靶区需要使用可用能量范围内的最低能量。然而,在这些能量下,能量选择系统的效率较低,并且需要更多的层,这可能是这种方法的缺点。另一种选择是在喷嘴出口处使用射程移动器(RS)。然而,使用这种束线元件的一个问题是,它成为了一个额外的中子源,可能会照射到远离靶区的器官。
本研究旨在评估 RS 在质子 PBS 技术中增加的中子剂量。此外,还测试了一种用于中子产生的分析模型。
为一个人体模型创建了两个设计以达到相同靶区覆盖的临床计划。这些计划包括一个横向射野,将 60 Gy(RBE)的吸收剂量输送到靶区。其中一个计划使用了 RS。使用 MCNP 代码模拟这些计划,评估中子剂量当量(H)和器官中的当量剂量分布。在使用 RS 的计划中,分别评估了来自患者和 RS 的中子产生。H 值也使用高斯函数拟合到射野边缘的距离。
在使用 RS 的计划中,每个处方剂量的 H 值在射野边缘处介于 1.4 和 3.7 mSv/Gy 之间,而在距边缘 40 cm 处的剂量范围从 9.9 到 32 μSv/Gy。这些值比没有 RS 时高 1.2 到 10 倍。这个因素以及来自 RS 的中子的贡献都随着距离射野边缘的增加而增加。虽然低估了值,但一个三重高斯函数能够在 2 倍以内再现器官中的当量剂量。
来自 RS 的中子在患者中沉积的剂量主要影响靶区以外的区域(距射野边缘约 25 cm 以外),导致大约 mSv 的中子剂量当量。这表明在 PBS 中使用 RS 会产生总体较低的中子贡献。