Suppr超能文献

基于同步辐射的 CNAO 设施中用于眼部治疗的非专用扫描质子束线的设计和调试。

Design and commissioning of the non-dedicated scanning proton beamline for ocular treatment at the synchrotron-based CNAO facility.

机构信息

Fondazione CNAO, strada Campeggi 53, 27100, Pavia, Italy.

Ente Ospedaliero Ospedali Galliera, via Mura delle Cappuccine 14, 16128, Genova, Italy.

出版信息

Med Phys. 2019 Apr;46(4):1852-1862. doi: 10.1002/mp.13389. Epub 2019 Feb 14.

Abstract

PURPOSE

Only few centers worldwide treat intraocular tumors with proton therapy, all of them with a dedicated beamline, except in one case in the USA. The Italian National Center for Oncological Hadrontherapy (CNAO) is a synchrotron-based hadrontherapy facility equipped with fixed beamlines and pencil beam scanning modality. Recently, a general-purpose horizontal proton beamline was adapted to treat also ocular diseases. In this work, the conceptual design and main dosimetric properties of this new proton eyeline are presented.

METHODS

A 28 mm thick water-equivalent range shifter (RS) was placed along the proton beamline to shift the minimum beam penetration at shallower depths. FLUKA Monte Carlo (MC) simulations were performed to optimize the position of the RS and patient-specific collimator, in order to achieve sharp lateral dose gradients. Lateral dose profiles were then measured with radiochromic EBT3 films to evaluate the dose uniformity and lateral penumbra width at several depths. Different beam scanning patterns were tested. Discrete energy levels with 1 mm water-equivalent step within the whole ocular energy range (62.7-89.8 MeV) were used, while fine adjustment of beam range was achieved using thin polymethylmethacrylate additional sheets. Depth-dose distributions (DDDs) were measured with the Peakfinder system. Monoenergetic beam weights to achieve flat spread-out Bragg Peaks (SOBPs) were numerically determined. Absorbed dose to water under reference conditions was measured with an Advanced Markus chamber, following International Atomic Energy Agency (IAEA) Technical Report Series (TRS)-398 Code of Practice. Neutron dose at the contralateral eye was evaluated with passive bubble dosimeters.

RESULTS

Monte Carlo simulations and experimental results confirmed that maximizing the air gap between RS and aperture reduces the lateral dose penumbra width of the collimated beam and increases the field transversal dose homogeneity. Therefore, RS and brass collimator were placed at about 98 cm (upstream of the beam monitors) and 7 cm from the isocenter, respectively. The lateral 80%-20% penumbra at middle-SOBP ranged between 1.4 and 1.7 mm depending on field size, while 90%-10% distal fall-off of the DDDs ranged between 1.0 and 1.5 mm, as a function of range. Such values are comparable to those reported for most existing eye-dedicated facilities. Measured SOBP doses were in very good agreement with MC simulations. Mean neutron dose at the contralateral eye was 68 μSv/Gy. Beam delivery time, for 60 Gy relative biological effectiveness (RBE) prescription dose in four fractions, was around 3 min per session.

CONCLUSIONS

Our adapted scanning proton beamline satisfied the requirements for intraocular tumor treatment. The first ocular treatment was delivered in August 2016 and more than 100 patients successfully completed their treatment in these 2 yr.

摘要

目的

全球只有少数几个中心(除美国外)使用质子疗法治疗眼内肿瘤,这些中心都配备了专用的束流线。意大利国家肿瘤强子治疗中心(CNAO)是一个基于同步加速器的强子治疗设施,配备了固定束流线和铅笔束扫描模式。最近,一种通用的水平质子束线被改装用于治疗眼部疾病。本文介绍了这种新的质子眼束线的概念设计和主要剂量学特性。

方法

在质子束线中放置了一个 28 毫米厚的水等效射程移位器(RS),以将较浅深度的最小束穿透深度移到更深处。使用 FLUKA 蒙特卡罗(MC)模拟来优化 RS 和患者特定准直器的位置,以实现锐利的横向剂量梯度。然后使用放射色 EBT3 胶片测量横向剂量分布,以评估在几个深度处的剂量均匀性和横向半影宽度。测试了不同的束扫描模式。在整个眼能范围(62.7-89.8 MeV)内使用 1 毫米水等效的离散能级,通过使用薄的聚甲基丙烯酸甲酯附加片来实现对束流范围的精细调整。使用 Peakfinder 系统测量深度剂量分布(DDD)。数值确定了实现平坦扩展布拉格峰(SOBP)的单能束权重。在参考条件下,用水吸收剂量用先进的 Markus 室测量,遵循国际原子能机构(IAEA)技术报告系列(TRS)-398 实践守则。使用被动气泡剂量计评估对侧眼的中子剂量。

结果

MC 模拟和实验结果证实,最大限度地增加 RS 和孔径之间的气隙可减小准直束的横向剂量半影宽度,并提高场横向剂量均匀性。因此,RS 和黄铜准直器分别放置在约 98 厘米(束流监测器上游)和 7 厘米处。中间 SOBP 的横向 80%-20%半影宽度取决于射野大小,在 1.4 到 1.7 毫米之间,而 DDD 的 90%-10%远端下降范围在 1.0 到 1.5 毫米之间,这取决于射程。这些值与大多数现有的眼部专用设备报告的值相当。测量的 SOBP 剂量与 MC 模拟非常吻合。对侧眼的平均中子剂量为 68 μSv/Gy。对于 60 Gy 相对生物效应(RBE)处方剂量的四个分次治疗,每次治疗的束流传输时间约为 3 分钟。

结论

我们改装的扫描质子束线满足了眼内肿瘤治疗的要求。2016 年 8 月进行了首例眼部治疗,在这 2 年中,已有 100 多名患者成功完成了治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验