Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
J Chem Theory Comput. 2024 Jan 9;20(1):469-476. doi: 10.1021/acs.jctc.3c01224. Epub 2023 Dec 19.
The process of drug design requires the initial identification of compounds that bind their targets with high affinity and selectivity. Advances in generative modeling of small molecules based on deep learning are offering novel opportunities for making this process faster and cheaper. Here, we propose an approach to achieve this goal, where predictions of binding affinity are used in conjunction with the Junction Tree Variational Autoencoder (JTVAE) whose latent space is used to facilitate the efficient exploration of the chemical space using a Bayesian optimization strategy. The exploration identifies small molecules predicted to have both high affinity and high selectivity by using an objective function that optimizes the binding to the target while penalizing the binding to off-targets. The framework is demonstrated for FMS-like tyrosine kinase 3 (FLT3) and shown to predict small molecules with predicted affinity and selectivity comparable to those of clinically approved drugs for this target.
药物设计的过程需要最初确定那些与靶标具有高亲和力和选择性的化合物。基于深度学习的小分子生成模型的进步为加快和降低这一过程的成本提供了新的机会。在这里,我们提出了一种实现这一目标的方法,其中结合了结合亲和力的预测,使用了连接树变分自动编码器(JTVAE),其潜在空间用于使用贝叶斯优化策略来促进化学空间的有效探索。通过使用优化与靶标结合同时惩罚与非靶标结合的目标函数,该探索确定了具有高亲和力和高选择性的小分子。该框架已针对 FMS 样酪氨酸激酶 3(FLT3)进行了演示,并显示出可预测出具有与该靶标临床批准药物相当的亲和力和选择性的小分子。