Suppr超能文献

基于变分自动编码器潜在空间的贝叶斯优化在选择性 FLT3 抑制剂生成中的应用。

Bayesian Optimization in the Latent Space of a Variational Autoencoder for the Generation of Selective FLT3 Inhibitors.

机构信息

Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.

出版信息

J Chem Theory Comput. 2024 Jan 9;20(1):469-476. doi: 10.1021/acs.jctc.3c01224. Epub 2023 Dec 19.

Abstract

The process of drug design requires the initial identification of compounds that bind their targets with high affinity and selectivity. Advances in generative modeling of small molecules based on deep learning are offering novel opportunities for making this process faster and cheaper. Here, we propose an approach to achieve this goal, where predictions of binding affinity are used in conjunction with the Junction Tree Variational Autoencoder (JTVAE) whose latent space is used to facilitate the efficient exploration of the chemical space using a Bayesian optimization strategy. The exploration identifies small molecules predicted to have both high affinity and high selectivity by using an objective function that optimizes the binding to the target while penalizing the binding to off-targets. The framework is demonstrated for FMS-like tyrosine kinase 3 (FLT3) and shown to predict small molecules with predicted affinity and selectivity comparable to those of clinically approved drugs for this target.

摘要

药物设计的过程需要最初确定那些与靶标具有高亲和力和选择性的化合物。基于深度学习的小分子生成模型的进步为加快和降低这一过程的成本提供了新的机会。在这里,我们提出了一种实现这一目标的方法,其中结合了结合亲和力的预测,使用了连接树变分自动编码器(JTVAE),其潜在空间用于使用贝叶斯优化策略来促进化学空间的有效探索。通过使用优化与靶标结合同时惩罚与非靶标结合的目标函数,该探索确定了具有高亲和力和高选择性的小分子。该框架已针对 FMS 样酪氨酸激酶 3(FLT3)进行了演示,并显示出可预测出具有与该靶标临床批准药物相当的亲和力和选择性的小分子。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba86/10782437/a6656c5eff9d/ct3c01224_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验