Suppr超能文献

AdaptCL: Adaptive Continual Learning for Tackling Heterogeneity in Sequential Datasets.

作者信息

Zhao Yuqing, Saxena Divya, Cao Jiannong

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Feb;36(2):2509-2522. doi: 10.1109/TNNLS.2023.3341841. Epub 2025 Feb 6.

Abstract

Managing heterogeneous datasets that vary in complexity, size, and similarity in continual learning presents a significant challenge. Task-agnostic continual learning is necessary to address this challenge, as datasets with varying similarity pose difficulties in distinguishing task boundaries. Conventional task-agnostic continual learning practices typically rely on rehearsal or regularization techniques. However, rehearsal methods may struggle with varying dataset sizes and regulating the importance of old and new data due to rigid buffer sizes. Meanwhile, regularization methods apply generic constraints to promote generalization but can hinder performance when dealing with dissimilar datasets lacking shared features, necessitating a more adaptive approach. In this article, we propose a novel adaptive continual learning (AdaptCL) method to tackle heterogeneity in sequential datasets. AdaptCL employs fine-grained data-driven pruning to adapt to variations in data complexity and dataset size. It also utilizes task-agnostic parameter isolation to mitigate the impact of varying degrees of catastrophic forgetting caused by differences in data similarity. Through a two-pronged case study approach, we evaluate AdaptCL on both datasets of MNIST variants and DomainNet, as well as datasets from different domains. The latter include both large-scale, diverse binary-class datasets and few-shot, multiclass datasets. Across all these scenarios, AdaptCL consistently exhibits robust performance, demonstrating its flexibility and general applicability in handling heterogeneous datasets.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验