Suppr超能文献

基于机器学习的各种形状微塑料沉降速度预测

Machine learning-based prediction for settling velocity of microplastics with various shapes.

作者信息

Qian Shangtuo, Qiao Xuyang, Zhang Wenming, Yu Zijian, Dong Shunan, Feng Jiangang

机构信息

National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu 210024, China; College of Agricultural Science and Engineering, Hohai University, Nanjing 211100, China.

National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, Jiangsu 210024, China; College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China.

出版信息

Water Res. 2024 Feb 1;249:121001. doi: 10.1016/j.watres.2023.121001. Epub 2023 Dec 9.

Abstract

Microplastics can easily enter the aquatic environment and be transported between water bodies. The terminal settling velocity of microplastics, which affects their transport and distribution in the aquatic environment, is mainly influenced by their size, density, and shape. Due to the difficulty in accurately predicting the terminal settling velocity of microplastics with various shapes, this study focuses on establishing high-performance prediction models and understanding the importance and effect of each feature parameter using machine learning. Based on the number of principal dimensions, the shapes of microplastics are classified into fiber, film, and fragment, and their thresholds are identified. The microplastics of different shape categories have different optimal shape parameters for predicting the terminal settling velocity: Corey shape factor, flatness, elongation, and sphericity for the fragment, film, fiber, and mixed-shape MPs, respectively. By including the dimensionless diameter, relative density and optimal shape parameter in the input parameter combination, the machine learning models can well predict the terminal settling velocity for the microplastics of different shape categories and mixed-shape with R > 0.867, achieving significantly higher performance than the existing theoretical and regression models. The interpretable analysis of machine learning reveals the highest importance of the microplastic size and its marginal effect when the dimensionless diameter D* = d(g/v) > 80, where d is the equivalent diameter, g is the gravitational acceleration, and ν is the fluid kinematic viscosity. The effect of shape is weak for small microplastics and becomes significant when D* exceeds 65.

摘要

微塑料能够轻易进入水生环境并在水体之间转移。微塑料的终端沉降速度影响其在水生环境中的迁移和分布,主要受其尺寸、密度和形状的影响。由于难以准确预测各种形状微塑料的终端沉降速度,本研究聚焦于利用机器学习建立高性能预测模型,并了解各特征参数的重要性和作用。基于主维度数量,将微塑料的形状分为纤维状、薄膜状和碎片状,并确定了它们的阈值。不同形状类别的微塑料在预测终端沉降速度时有不同的最佳形状参数:碎片状、薄膜状、纤维状和混合形状微塑料分别为科里形状因子、扁平度、伸长率和球形度。通过在输入参数组合中纳入无量纲直径、相对密度和最佳形状参数,机器学习模型能够很好地预测不同形状类别和混合形状微塑料的终端沉降速度,相关系数R>0.867,性能显著高于现有的理论模型和回归模型。机器学习的可解释性分析表明,当无量纲直径D*=d(g/v)>80时(其中d为等效直径,g为重力加速度,ν为流体运动粘度),微塑料尺寸的重要性最高及其边际效应最大。对于小尺寸微塑料,形状的影响较弱,而当D*超过65时,形状的影响变得显著。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验