文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

泛癌症分析揭示了牙齿缺失突变基因的特征和作用。

Pan-cancer analysis reveals the characteristics and roles of tooth agenesis mutant genes.

机构信息

Cancer Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.

Department of Pediatric Dentistry, Peking University School of Stomatology, Beijing, China.

出版信息

Medicine (Baltimore). 2023 Dec 15;102(50):e36001. doi: 10.1097/MD.0000000000036001.


DOI:10.1097/MD.0000000000036001
PMID:38115305
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10727548/
Abstract

Tooth development is regulated by numerous genes and signaling pathways. Some studies suggest that mutations in these genes may be associated with several cancer types. However, the tooth agenesis mutated genes role in the prognosis and their clinical therapeutic potentials in pan-cancer have not been elaborately explored. Moreover, the intrinsic correlation between tooth agenesis and cancers also needs to be further verified. We preliminarily analyzed expression levels and prognostic values of causative genes of tooth agenesis, and explored the correlation between the expression of tooth agenesis mutated genes and TME, Stemness score, clinical characteristic, immune subtype, and drug sensitivity in pan-cancer, which based on updated public databases and integrated some bioinformatics analysis methods. In addition, we conducted the enrichment analysis of tooth agenesis mutant genes from KOBAS database. We observed that TA mutant genes had significant gene expression differences in multiple cancer types compared with normal tissues. The expression of causative genes of TA is associated with the prognosis in several cancers from different databases. For example, AXIN2 and MSX1 were correlated to the overall survival (OS) of uterine corpus endometrial carcinoma. PAX9 and TP63 were related to OS of lung squamous cell carcinoma. And TP63 was associated with OS in breast invasive carcinoma and pancreatic adenocarcinoma. Furthermore, the expression of TA mutant genes also has a significant correlation with stromal and immune scores, and RNA stemness score and DNA stemness score in pan-cancer. Besides, we observed that all causative genes of TA were significantly correlated with immune subtypes. Moreover, KEGG pathway analysis showed that causative genes of TA were associated with the development and progression of breast cancer, basal cell carcinoma, gastric cancer, and hepatocellular carcinoma. Finally, AXIN2 expression has a significantly positive or negative correlation with drug sensitivity. Our study indicates the great potential of TA mutant genes as biomarkers for prognosis and provides valuable strategies for further investigation of TA mutant genes as potential therapeutic targets in cancers. Our study can further verify that there may be an intrinsic correlation between tooth agenesis and the occurrence of multiple cancers.

摘要

牙齿发育受众多基因和信号通路的调节。一些研究表明,这些基因的突变可能与几种癌症类型有关。然而,牙齿缺失突变基因在泛癌中的预后作用及其临床治疗潜力尚未得到详细探讨。此外,牙齿缺失与癌症之间的内在相关性也需要进一步验证。我们初步分析了牙齿缺失的致病基因突变的表达水平和预后价值,并基于更新的公共数据库和综合运用一些生物信息学分析方法,探讨了泛癌中牙齿缺失突变基因与 TME、干性评分、临床特征、免疫亚型和药物敏感性之间的相关性。此外,我们还从 KOBAS 数据库中对牙齿缺失突变基因进行了富集分析。我们观察到,与正常组织相比,TA 突变基因在多种癌症类型中的基因表达存在显著差异。TA 的致病基因的表达与来自不同数据库的几种癌症的预后相关。例如,AXIN2 和 MSX1 与子宫体子宫内膜癌的总生存期(OS)相关。PAX9 和 TP63 与肺鳞状细胞癌的 OS 相关。而 TP63 与乳腺癌和胰腺腺癌的 OS 相关。此外,TA 突变基因的表达也与泛癌中的基质和免疫评分以及 RNA 干性评分和 DNA 干性评分具有显著相关性。此外,我们观察到 TA 的所有致病基因都与免疫亚型显著相关。此外,KEGG 通路分析表明,TA 的致病基因与乳腺癌、基底细胞癌、胃癌和肝细胞癌的发生和发展有关。最后,AXIN2 表达与药物敏感性呈显著正相关或负相关。我们的研究表明 TA 突变基因作为预后生物标志物具有巨大潜力,并为进一步研究 TA 突变基因作为癌症潜在治疗靶点提供了有价值的策略。我们的研究可以进一步验证牙齿缺失与多种癌症的发生之间可能存在内在相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/e37f529e176f/medi-102-e36001-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/5c7f140de752/medi-102-e36001-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/769b8161f606/medi-102-e36001-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/e5c89bc702b7/medi-102-e36001-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/79434db0418b/medi-102-e36001-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/a68ce72442e1/medi-102-e36001-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/e51da0fe1230/medi-102-e36001-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/19e9ded305c2/medi-102-e36001-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/6ed7f545c0c0/medi-102-e36001-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/714cdc4afe9b/medi-102-e36001-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/90125a905aa6/medi-102-e36001-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/60a2e967bc1a/medi-102-e36001-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/e37f529e176f/medi-102-e36001-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/5c7f140de752/medi-102-e36001-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/769b8161f606/medi-102-e36001-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/e5c89bc702b7/medi-102-e36001-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/79434db0418b/medi-102-e36001-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/a68ce72442e1/medi-102-e36001-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/e51da0fe1230/medi-102-e36001-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/19e9ded305c2/medi-102-e36001-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/6ed7f545c0c0/medi-102-e36001-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/714cdc4afe9b/medi-102-e36001-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/90125a905aa6/medi-102-e36001-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/60a2e967bc1a/medi-102-e36001-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/18ce/10727548/e37f529e176f/medi-102-e36001-g012.jpg

相似文献

[1]
Pan-cancer analysis reveals the characteristics and roles of tooth agenesis mutant genes.

Medicine (Baltimore). 2023-12-15

[2]
Pan-cancer analysis of SERPINE family genes as biomarkers of cancer prognosis and response to therapy.

Front Mol Biosci. 2024-1-11

[3]
Pan-cancer analysis of SLC2A family genes as prognostic biomarkers and therapeutic targets.

Heliyon. 2024-4-13

[4]
The panoramic picture of pepsinogen gene family with pan-cancer.

Cancer Med. 2020-12

[5]
[Pan-cancer analysis of ubiquitin-specific protease 7 and its expression changes in the carcinogenesis of scar ulcer].

Zhonghua Shao Shang Yu Chuang Mian Xiu Fu Za Zhi. 2023-6-20

[6]
NCBP2 predicts the prognosis and the immunotherapy response of cancers: a pan-cancer analysis.

PeerJ. 2025-3-20

[7]
Identification of SHCBP1 as a potential biomarker involving diagnosis, prognosis, and tumor immune microenvironment across multiple cancers.

Comput Struct Biotechnol J. 2022-6-18

[8]
Identifies microtubule-binding protein as a novel cancer biomarker associated with ferroptosis and tumor microenvironment.

Comput Struct Biotechnol J. 2022-6-24

[9]
Distinct Roles of Adenosine Deaminase Isoenzymes ADA1 and ADA2: A Pan-Cancer Analysis.

Front Immunol. 2022

[10]
Genetic analysis: Wnt and other pathways in nonsyndromic tooth agenesis.

Oral Dis. 2018-7-23

引用本文的文献

[1]
"Examining the link between tooth agenesis and papillary thyroid cancer: is there a risk factor?" Observational study.

Prog Orthod. 2024-3-25

本文引用的文献

[1]
Tooth agenesis patterns and variants in : A systematic review.

Jpn Dent Sci Rev. 2023-12

[2]
Modulation of Wnt-β-catenin signaling with antibodies: therapeutic opportunities and challenges.

Trends Pharmacol Sci. 2023-6

[3]
The EDA/EDAR/NF-κB pathway in non-syndromic tooth agenesis: A genetic perspective.

Front Genet. 2023-4-3

[4]
Cells of the tumor microenvironment speak the Wnt language.

Trends Mol Med. 2023-6

[5]
PAX9 mutations and genetic synergism in familial tooth agenesis.

Ann N Y Acad Sci. 2023-6

[6]
Targeting Hippo pathway: A novel strategy for Helicobacter pylori-induced gastric cancer treatment.

Biomed Pharmacother. 2023-5

[7]
The deubiquitinating enzyme UCHL3 promotes anaplastic thyroid cancer progression and metastasis through Hippo signaling pathway.

Cell Death Differ. 2023-5

[8]
N6-Methyladenosine-Mediated Up-Regulation of FZD10 Regulates Liver Cancer Stem Cells' Properties and Lenvatinib Resistance Through WNT/β-Catenin and Hippo Signaling Pathways.

Gastroenterology. 2023-5

[9]
Identification of a Novel Gene Signature with DDR and EMT Difunctionalities for Predicting Prognosis, Immune Activity, and Drug Response in Breast Cancer.

Int J Environ Res Public Health. 2023-1-10

[10]
Construction of Oxidative Stress-Related Genes Risk Model Predicts the Prognosis of Uterine Corpus Endometrial Cancer Patients.

Cancers (Basel). 2022-11-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索