Suppr超能文献

基于机器学习的熔丝制造工艺运行状态识别与压缩性能预测

Machine Learning-Based Operational State Recognition and Compressive Property Prediction in Fused Filament Fabrication.

作者信息

Li Yongxiang, Xu Guoning, Zhao Wei, Wang Tongcai, Li Haochen, Liu Yifei, Wang Gong

机构信息

Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China.

CAS Key Laboratory of Space Manufacturing Technology, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences, Beijing, China.

出版信息

3D Print Addit Manuf. 2023 Dec 1;10(6):1347-1360. doi: 10.1089/3dp.2021.0185. Epub 2023 Dec 11.

Abstract

3D printing has exhibited significant potential in outer space and medical implants. To use this technology in the specific high-value scenarios, 3D-printed parts need to satisfy quality-related requirements. In this article, the influence of the filament feeder operating states of 3D printer on the compressive properties of 3D-printed parts is studied in the fused filament fabrication process. A machine learning approach, back-propagation neural network with a genetic algorithm (GA-BPNN) optimized by -fold cross-validation, is proposed to monitor the operating states and predict the compressive properties. Vibration and current sensors are used to monitor the operating states of the filament feeder, and a set of features are extracted and selected from raw sensor data in time and frequency domains. Results show that the operating states of the filament feeder significantly affected the compressive properties of the fabricated samples, the operating states were accurately recognized with 96.3% rate, and compressive properties were successfully predicted by the GA-BPNN. This proposed method has the potential for use in industrial applications after 3D printing without requiring any further quality control.

摘要

3D打印在外层空间和医疗植入物领域已展现出巨大潜力。为在特定高价值场景中应用该技术,3D打印部件需满足与质量相关的要求。本文在熔丝制造工艺中研究了3D打印机的送丝机运行状态对3D打印部件压缩性能的影响。提出了一种通过K折交叉验证优化的机器学习方法,即带有遗传算法的反向传播神经网络(GA-BPNN),用于监测运行状态并预测压缩性能。使用振动和电流传感器监测送丝机的运行状态,并从原始传感器数据的时域和频域中提取和选择一组特征。结果表明,送丝机的运行状态显著影响所制造样品的压缩性能,运行状态的识别准确率达到96.3%,GA-BPNN成功预测了压缩性能。该方法有潜力应用于3D打印后的工业应用,无需任何进一步的质量控制。

相似文献

1
Machine Learning-Based Operational State Recognition and Compressive Property Prediction in Fused Filament Fabrication.
3D Print Addit Manuf. 2023 Dec 1;10(6):1347-1360. doi: 10.1089/3dp.2021.0185. Epub 2023 Dec 11.
2
In-Situ Monitoring and Diagnosing for Process Based on Vibration Sensors.
Sensors (Basel). 2019 Jun 6;19(11):2589. doi: 10.3390/s19112589.
3
Structure-Property Relationships for 3D printed PEEK Intervertebral Lumbar Cages Produced using Fused Filament Fabrication.
J Mater Res. 2018 Jul 27;33(14):2040-2051. doi: 10.1557/jmr.2018.178. Epub 2018 Jun 18.
4
Prediction of HPC compressive strength based on machine learning.
Sci Rep. 2024 Jul 22;14(1):16776. doi: 10.1038/s41598-024-67850-9.
7
Structure-function assessment of 3D-printed porous scaffolds by a low-cost/open source fused filament fabrication printer.
Mater Sci Eng C Mater Biol Appl. 2021 Apr;123:111945. doi: 10.1016/j.msec.2021.111945. Epub 2021 Mar 4.
8
3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication-A Review.
Polymers (Basel). 2020 Sep 24;12(10):2188. doi: 10.3390/polym12102188.
9
Feasibility of Producing Core-Shell Filaments through Fused Filament Fabrication.
Polymers (Basel). 2021 Dec 4;13(23):4253. doi: 10.3390/polym13234253.

本文引用的文献

1
A Perspective on Using Machine Learning in 3D Bioprinting.
Int J Bioprint. 2020 Jan 24;6(1):253. doi: 10.18063/ijb.v6i1.253. eCollection 2020.
2
Fused Filament Fabrication of PEEK: A Review of Process-Structure-Property Relationships.
Polymers (Basel). 2020 Jul 27;12(8):1665. doi: 10.3390/polym12081665.
3
Fabrication of Smart Components by 3D Printing and Laser-Scribing Technologies.
ACS Appl Mater Interfaces. 2020 Jan 22;12(3):3928-3935. doi: 10.1021/acsami.9b17467. Epub 2020 Jan 10.
4
Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing.
Science. 2019 Nov 29;366(6469):1116-1121. doi: 10.1126/science.aax7616.
5
In-Situ Monitoring and Diagnosing for Process Based on Vibration Sensors.
Sensors (Basel). 2019 Jun 6;19(11):2589. doi: 10.3390/s19112589.
7
Filament Advance Detection Sensor for Fused Deposition Modelling 3D Printers.
Sensors (Basel). 2018 May 9;18(5):1495. doi: 10.3390/s18051495.
8
Filament Breakage Monitoring in Fused Deposition Modeling Using Acoustic Emission Technique.
Sensors (Basel). 2018 Mar 1;18(3):749. doi: 10.3390/s18030749.
9
Rotational 3D printing of damage-tolerant composites with programmable mechanics.
Proc Natl Acad Sci U S A. 2018 Feb 6;115(6):1198-1203. doi: 10.1073/pnas.1715157115. Epub 2018 Jan 18.
10
Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences.
Anal Chem. 2014 Apr 1;86(7):3240-53. doi: 10.1021/ac403397r. Epub 2014 Jan 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验