Gutiérrez López M Ángeles, Tan Mei-Ling, Renno Giacomo, Jozeliūnaitė Augustina, Nué-Martinez J Jonathan, Lopez-Andarias Javier, Sakai Naomi, Matile Stefan
Department of Organic Chemistry, University of Geneva, Geneva, Switzerland.
Beilstein J Org Chem. 2023 Dec 12;19:1881-1894. doi: 10.3762/bjoc.19.140. eCollection 2023.
Anion-π catalysis, introduced in 2013, stands for the stabilization of anionic transition states on π-acidic aromatic surfaces. Anion-π catalysis on carbon allotropes is particularly attractive because high polarizability promises access to really strong anion-π interactions. With these expectations, anion-π catalysis on fullerenes has been introduced in 2017, followed by carbon nanotubes in 2019. Consistent with expectations from theory, anion-π catalysis on carbon allotropes generally increases with polarizability. Realized examples reach from enolate addition chemistry to asymmetric Diels-Alder reactions and autocatalytic ether cyclizations. Currently, anion-π catalysis on carbon allotropes gains momentum because the combination with electric-field-assisted catalysis promises transformative impact on organic synthesis.
阴离子-π催化于2013年被引入,是指在π酸性芳香表面上阴离子过渡态的稳定化。碳同素异形体上的阴离子-π催化特别具有吸引力,因为高极化率有望实现真正强大的阴离子-π相互作用。基于这些期望,2017年引入了富勒烯上的阴离子-π催化,随后在2019年引入了碳纳米管上的阴离子-π催化。与理论预期一致,碳同素异形体上的阴离子-π催化通常随极化率增加。已实现的例子涵盖烯醇盐加成化学、不对称狄尔斯-阿尔德反应和自催化醚环化反应。目前,碳同素异形体上的阴离子-π催化正蓬勃发展,因为与电场辅助催化相结合有望对有机合成产生变革性影响。