Department of Physiology, University of Arizona, Tucson, Arizona, USA.
Eur J Neurosci. 2024 Feb;59(3):323-332. doi: 10.1111/ejn.16232. Epub 2023 Dec 20.
Neurovascular coupling (NVC) refers to a local increase in cerebral blood flow in response to increased neuronal activity. Mechanisms of communication between neurons and blood vessels remain unclear. Astrocyte endfeet almost completely cover cerebral capillaries, suggesting that astrocytes play a role in NVC by releasing vasoactive substances near capillaries. An alternative hypothesis is that direct diffusion through the extracellular space of potassium ions (K ) released by neurons contributes to NVC. Here, the goal is to determine whether astrocyte endfeet present a barrier to K diffusion from neurons to capillaries. Two simplified 2D geometries of extracellular space, clefts between endfeet, and perivascular space are used: (i) a source 1 μm from a capillary; (ii) a neuron 15 μm from a capillary. K release is modelled as a step increase in [K ] at the outer boundary of the extracellular space. The time-dependent diffusion equation is solved numerically. In the first geometry, perivascular [K ] approaches its final value within 0.05 s. Decreasing endfeet cleft width or increasing perivascular space width slows the rise in [K ]. In the second geometry, the increase in perivascular [K ] occurs within 0.5 s and is insensitive to changes in cleft width or perivascular space width. Predicted levels of perivascular [K ] are sufficient to cause vasodilation, and the rise time is within the time for flow increase in NVC. These results suggest that direct diffusion of K through the extracellular space is a possible NVC signalling mechanism.
神经血管耦合(NVC)是指大脑血液流量响应神经元活动增加而局部增加的现象。神经元和血管之间的通讯机制仍不清楚。星形胶质细胞的足突几乎完全覆盖了脑毛细血管,这表明星形胶质细胞可能通过在毛细血管附近释放血管活性物质在 NVC 中发挥作用。另一种假设是,神经元释放的钾离子(K+)通过细胞外间隙的直接扩散有助于 NVC。在这里,目的是确定星形胶质细胞的足突是否对神经元到毛细血管的 K 扩散构成障碍。使用了两种简化的细胞外空间 2D 几何形状:(i)距毛细血管 1μm 的源;(ii)距毛细血管 15μm 的神经元。将 K 释放模拟为细胞外空间外边界处 [K+]的阶跃增加。通过数值求解时变扩散方程。在第一种几何形状中,血管周[K+]在 0.05s 内接近其最终值。减小足突间隙宽度或增加血管周空间宽度会减缓 [K+]的上升。在第二种几何形状中,血管周 [K+]的增加发生在 0.5s 内,并且不受足突间隙宽度或血管周空间宽度变化的影响。预测的血管周 [K+]水平足以引起血管扩张,上升时间在 NVC 中血流增加的时间范围内。这些结果表明,K 通过细胞外空间的直接扩散是 NVC 信号传递机制的一种可能形式。